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Abstract. For more than a decade, the need to share the frequency spectrum between radar and 

wireless communication systems has emerged due to the massive increase in demand for communication 

services and the availability of underutilized radar bands. At the same time, spectrum sharing between 

radar and wireless communication systems faces the problem of interference that affects the performance 

of both systems, which has attracted researchers to find effective solutions to reduce interference in an 

environment where both systems share the radio spectrum. In this paper, we review the most prominent 

optimization methods that have been used to share the frequency spectrum and reduce interference between 

radar and wireless communication systems. 
 

Keywords: Spectrum Sharing; MIMO Radar; Communication System; Optimization Techniques; 

Interference Mitigation. 
 

 

1. INTRODUCTION  

 

 

          To keep pace with the massive increase in the number of wireless users and devices, the Federal 

Communications Commission (FCC) and  National Telecommunications and Information Administration 

(NTIA) has been focusing on emerging solutions that are capable to spectrum sharing between different 

spectrum users by suggested sharing 100 MHz in the frequency band 3550–3650MHz spectrum with 

wireless communication users [1].There is an increasing demand to share radar frequency bands such as the 

navigation radar spectrum with communication systems due to the increasing number of communication 

users and the limited radio frequency spectrum, especially in the L, S band. Radar and wireless 

communications are often viewed as a source of interference between each other, so there is a need to find 

ways to reduce interference between the two systems by separating them in time or space [2]. To address 

these shortcomings, spectrum sharing between communications and radar has been developed as a viable 

solution. Optimization theory provides systematic methods for designing radar waveforms, frequency 

precedes, and beamformers that can coexist with the communications signals. This paper provides a 

systematic review and classification of optimization techniques for improving spectrum sharing between 

radar and cellular systems. The respite of this paper is arranged as follows. Section 2 describes the system 

model MIMO radar and BS model. then in Section 3 propose a review about Optimization techniques of 

Spectrum sharing and approaches. Finally, conclusions in Section 4. 
 

 

2. SYSTEM MODELS 

The system modeled to joint radar and communication which contains of a MIMO-  radar and MIMO 

communication systems operating in the spectrum shared. The system model proposes that the radar detect 

mailto:haneen.chyad.ms6@student.atu.edu.iqو
mailto:coj.ghf@atu.edu.iq
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https://doi.org/10.46649/fjiece.v4.1.14a.25.9.2025


    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 4
, 

Is
su

e:
 2

, 
 S

ep
te

m
b

er
, 

2
5

, 
2
0

2
5
, 

©
 2

0
2

0
 F

JI
E

C
E

, 
A

ll
 R

ig
h

ts
 R

e
se

rv
ed

  

198 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

the target by radiating power toward the target and receiving echo waveform. In the base station side, the 

communication does not occur in the direct path between the radar system and targets. Instead, the echoes 

from the target will interfere with the MIMO-communication systems as shown in Figure 1 [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  MIMO radar-MIMO communication model Spectrum Sharing 

 

 

This section will define MIMO radar, communication system, And interference channel model.  

 

 

 

2.1. MIMO RADAR MODEL 

 

 

           MIMO (Multiple-Input Multiple-Output) radar is one of the latest developments in modern radar 

technology. It relies on the use of multiple antennas to transmit and receive simultaneously. This multiplicity 

gives the radar additional capabilities compared to traditional single-antenna or multi-antenna radars with 

uniform transmission. The basic idea is to transmit perpendicular waves from each antenna and then receive 

the reflections independently, creating a virtual array larger than the actual size of the antennas. This 

improves spatial accuracy in estimating angles and increases the range available for differentiating between 

targets, even in complex situations such as close proximity or in environments rich in reflections[4] the 

transmit signal is given as 

  

𝒙(𝑛) = [x1(n) 𝑥2(𝑛) 𝑥3(𝑛) … 𝑥𝑀(𝑛)]        (1) 

 

where 𝑥𝑀(𝑛) is transmit baseband signal from the 𝑀𝑡ℎ radar’s antenna element at time index n [5].  
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2.2. COMMUNICATION SYSTEM 

 

            BS is considered the central component of cellular networks, communication system consists of K 

base stations, each equipped with NBS transceiver antennas, serving as the bridge between user equipment 

(UE) and the core network. It typically consists of antennas, radio processing units, digital units, and 

backhaul links that connect it to the rest of the network. The BS's function is not limited to providing 

geographic coverage, but also includes managing spectrum resources, organizing simultaneous 

communications between users, and supporting advanced technologies such as MIMO and beamforming. 

If 𝑠𝑗(𝑛) is the signals transmitted by the 𝑗𝑡ℎ user equipment in the 𝑖𝑡ℎ cell, then the received signal at the ith 

BS receiver can be written as 

 

 𝒚𝑖(𝑛) = ∑𝑯𝑖𝑗𝒔(𝑛) + 𝒘(𝑛)      for 1 ⩽ 𝑖 ⩽ K and 1 ⩽ 𝑗 ⩽ 𝐿𝑖𝑗      (2) 

 

where 𝐻𝑖𝑗is the channel matrix between the 𝑖𝑡ℎ base station and the 𝑗𝑡ℎ user equipment and w(n) is the 

additive white Gaussian noise [4], then the signal received at the base station when share the spectrum 

with the MIMO radar  as follow 

 

𝒚𝑖(𝑛) = 𝑯𝑖𝒙(𝑛) + ∑𝑯𝑖𝑗𝒔(𝑛) + 𝒘(𝑛)        (3) 

 

where 𝐻𝑖is the interference channel matrix between the 𝑁𝐵𝑆 base station antennas  and 𝑁𝑅 MIMO Radar 

antennas. 

 

2.3. INTERFERENCE CHANNEL MODEL 

 

          MIMO radar faces real challenges, most notably the computational complexity resulting from 

processing a large number of channels, in addition to the need to carefully design orthogonal waves to avoid 

interference during reception. Another challenge arises when the radar operates in frequency bands shared 

with communications systems, requiring advanced solutions for spectrum sharing and interference 

mitigation[6]. This interference is understood through two alternate channels: a channel from the radar 

antennas to the BS antennas 𝐻𝑟→𝑐 and a reverse channel from the BS antennas to the radar antennas 𝐻𝑐→𝑟  

Both are typically frequency-selective and time-varying, and may be modelled as Rayleigh, Rician (when 

a line-of-sight path is present) or another channel distribution , creating energy leakage through the side 

lobes and imperfect filter passes. Spectral coexistence is therefore viewed as a matter of fine-tuning the 

coupling of these two channels or shaping the signal so that the energy is projected onto spaces that do not 

reach the sensitive receiver. 

 

 

3. SPECTUM SHARING OPTIMIZATION TECHNIQUES AND APPROACHES 

 

          This paper will adopt five main pillars to divide the approaches of RF spectrum sharing optimization  

between MIMO radar and cellular communications systems, as follows: 

 

 

 

 

 

 



    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 4
, 

Is
su

e:
 2

, 
 S

ep
te

m
b

er
, 

2
5

, 
2
0

2
5
, 

©
 2

0
2

0
 F

JI
E

C
E

, 
A

ll
 R

ig
h

ts
 R

e
se

rv
ed

  

200 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

3.1. Spatial Projection / Nulling (NSP) 

 

 

Null-space projection is one of the methods for achieving spectral coexistence between radar and 

communications. The basic idea is based on a mathematical property of interference of radar-

communication channels If the interference channel is represented by a matrix H , the null space of this 

matrix contains all vectors that, when passed through the channel, yield zero at the receivers. Therefore, if 

projected the radar signal onto the null space of H , the signal component arriving at the communications 

system is zero ( no interference occurs). Mathematically, this projection can be obtained through singular 

value decomposition (SVD) of the channel matrix, where the vectors corresponding to the null singular 

values are used to construct the projection matrix. The major advantage of this method is that it completely 

eliminates interference (perfect interference cancellation). However, it has some limitations such as the size 

of the zero-space depends on the rank of the matrix, H. If the channel is full-rank, the radar may not have 

any freedom to transmit and assumes perfect channel knowledge (CSI) between the radar and the 

communications system, an assumption that may be unrealistic in practical settings. Therefore, NSP was 

considered the starting point, and later improvements such as Switched NSP, Small-Singular-Value 

Subspace Projection (SSSVSP), and more complex methods based on joint design or probabilistic 

optimization have emerged to overcome its limitations. In [7] presents the idea of projecting radar 

waveforms onto the null space of the interference channel to permit spectrum coexistence with 

communication systems. Assuming the radar (modeled as a collocated MIMO radar) has wisdom of the 

interference channel information , it adapts its transmitted signals so that they do not leak into the 

communication system’s reception space. The authors analyze the performance impact of this projection 

using maximum likelihood estimation and Cramér–Rao bounds, comparing cases with and without null-

space projection. Simulation results show that, with an optimal number of antennas and proper selection of 

null-space thresholds, radar target detection and direction estimation remain close to conventional 

performance, while interference to communication systems is effectively mitigated. This work established 

null-space projection as a foundational optimization technique for radar–communication coexistence. In [5] 

presents an optimization-based framework for designing constant-envelope (CE) MIMO radar waveforms 

that can coexist with LTE/WiMAX systems. The authors extend the classical beampattern matching 

problem by introducing an additional constraint: the waveform must lie in the null space of the interference 

channel to the communication system. For stationary maritime radars with slowly varying channels, the 

null-space projection (NSP) is incorporated directly into the nonlinear optimization problem, ensuring both 

desired beampattern shaping and interference avoidance. For moving radars with fast changing channels, 

CE waveforms are first designed via unconstrained optimization and then projected onto the null-space 

afterward. The optimization leverages covariance matrix synthesis with constant-envelope constraints, 

solved using spherical coordinate parameterization and selective channel-state-based NSP algorithms. 

Simulation results demonstrate that selecting the interference channel with the largest null-space dimension 

yields beampatterns that closely match desired shapes while ensuring zero interference. In [8] proposes a 

radar-centric spatial method to mitigate interference in coexistence scenarios. The authors extend the 

concept of null-space projection (NSP) from a single interference channel to multiple channels created by 

several LTE base stations. To minimize radar performance degradation, they introduce an interference-

channel-selection algorithm that chooses the channel with the maximum null-space dimension, onto which 

radar signals are projected using a modified and more efficient NSP algorithm. Analytical models and 

simulation evaluated through metrics such as Cramér–Rao bounds, maximum likelihood estimation of target 

angle, and radar beampattern prove that carefully selecting the best channel significantly reduces the loss in 

radar detection accuracy while ensuring zero interference to LTE. In [9] frames existence as an optimization 

through null-space projection. The radar selects  largest null-space dimension of interference channel with 

the and projects its waveform, accordingly, minimizing distortion while ensuring zero interference to LTE. 
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The optimization is formulated as choosing the projection matrix which better preserves the radar wave 

structure under the null-space constraint., and detection is analysed using the generalized likelihood ratio 

test GLRT framework. This approach highlights the trade-off between maintaining radar detection 

capability and strictly protecting LTE systems, with channel selection serving as the key optimization 

mechanism. In [10] develops a radar centric spectrum sharing strategy that relies on two layers of 

optimization. First, the authors propose the "overlapped MIMO" architecture, where the transmit antenna 

array is partitioned into several overlapping subarrays. This design increases the effective virtual aperture 

size and provides stronger sidelobe suppression compared to conventional MIMO, which is critical in 

reducing unintentional interference leakage. The optimization problem here is to determine the optimal 

number of subarrays K that maximizes the effective aperture (MT−K+1) K By solving this discrete 

optimization, the radar gains additional spatial degrees of freedom. The second layer of optimization is the 

application of null-space projection (NSP). With knowledge  CSI of the communication system, the radar 

computes a projection matrix (via singular value decomposition) and projects its signals into the null-space 

of the interference channel. This guarantees zero interference to the communication receivers. The 

overlapped MIMO formulation makes NSP feasible even when the number of physicals transmit antennas 

MT is not larger than the number of communications receive antennas, since the overlapping scheme 

effectively enlarges the transmit dimension. In [11] turns coexistence into a two-step selection-and-

projection optimization. First, at each pulse, the radar selects the LTE BS whose channel gives the least 

distortion if the radar signal projected, it choice the channel whose harmless subspace  will change the 

waveform the least. Second, the radar projects its signal either into the null-space (SNSP  zero interference) 

or, if that space is too small, into the subspace spanned by small singular values (SSSVSP very low but 

nonzero leakage), which preserves the radar beampattern better. Practically, compute SVD for each 

candidate channel, score how much the projection would alter the signal, choice the best, then transmit. This 

optimization employments small waveform change for rigorous LTE protection. Together, these two 

optimizations subarray selection and NSP projection produce a coexistence framework that not only 

satisfies rigorous interference constraints but also improves radar beampattern quality. The results show 

that overlapped MIMO with NSP beats conventional MIMO by simultaneously achieving higher sidelobe 

clampdown, better virtual array resolution, and robust coexistence with communication systems.  

 

3.2. Information-Theoretic Power / Spectrum Allocation 

 

          The information-perspective spectrum and power allocation approach addresses the coexistence issue 

between radar and communications by redistributing power across frequencies or carriers to maximize the 

mutual information of communications or improve the signal-to-noise ratio and interference of radar. 

Instead of relying on spatial projection, the spectral envelope of the transmitted signals is reshaped to 

balance the requirements of the two systems within overall constraints including transmitted power, 

interference masks, and waveform similarity constraints. These formulations have the advantage of being 

transformable into convex problems that can be efficiently solved using standard software tools such as 

waterfilling algorithms or linear programming, enabling a precise mathematical description of the trade-off 

between communications reliability and radar detection capability. In [12] suggests an information-theoretic 

algorithm to design waveform of MIMO radars to allow coexistence with communication systems. The core 

idea is to maximize the mutual information (MI) between the target response and the radar’s received signal 

while satisfying practical constraints such as preventive interference to LTE/WiMAX systems, avoiding 

clutter, and ensuring total power and low peak-to-average power ratio (PAPR). The problem is formulated 

as a convex optimization over the power spectral density (PSD), and the solution exhibits a water-filling 

structure, allocating more power to frequencies where the target response controls over clutter. To recover 

time-domain signals, the authors employ a Cyclic Projection CP Algorithm, which engenders unimodular 

sequences with good auto- and cross-correlation properties. Numerical results demonstrate that the proposed 
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approach effectively balances target detection performance with interference mitigation requirements, focus 

on a fundamental trade-off between improved spectral shaping and sidelobe extinction. In [13] expresses 

coexistence as two distinct optimization problems in the frequency domain. In the target characterization 

case, the goal is to maximize the mutual information between the radar return and the received signal, while 

respecting constraints on per-subcarrier interference (to protect the communication system) and a total radar 

power budget. This problem results in a limited distribution of the power needed to fill the gaps across the 

OFDM subcarriers. In the case of target detection, the goal becomes maximizing the received signal-to-

interference-to-noise ratio (SINR) of the radar, which is formulated as a linear finite optimization problem 

under the same interference and power constraints, concentrating power on the appropriate subcarriers. 

Using second-order channel statistics and circuit approximations, both problems are easily solved, and the 

results highlight a key trade-off: a mutual information-based design service a wide frequency bandwidth 

distribution, while a SINR-based design service concentrating power on a smaller number of subcarriers. In 

[2] Coexistence is formulated as a joint optimization of communication power distribution and radar 

estimation accuracy in a multiple-access channel model. At the radar receiver, a cascade interference 

cancellation (SIC) algorithm is designed to repeatedly separate the returned radar signals and decode the 

communication signals, effectively reducing crosstalk. In the communications domain, transmission 

contrast is optimized via a two-dimensional space-filling algorithm across both frequency (spectrum-

splitting) and spatial eigenmodes, maximizing data rate under power constraints. The result is a multiple-

access (MAC) performance frontier that jointly characterizes the radar estimation rate and communication 

throughput, exhibiting superior trade-offs compared to isolated operation. In [14] authors formulates 

coexistence as a joint optimization problem, where the variables are the radar transmit power, the radar 

receive filters, and the communications codebook covariance matrix. The goal is to maximize the mutual 

information of the communications system while ensuring that the radar achieves the lowest signal-to-

disturbance ratio (SDR) at each resolution cell under clutter. Because the problem is non-convex, the authors 

use a block-coordinate ascension (alternating maximization) approach: each variable is optimized in turn 

while holding the others constant. The results demonstrate that this joint design significantly improves 

communication rates and radar robustness compared to separate designs, especially under severe clutter 

conditions. 

 

3.3.  Joint Radar–Comms Co-Design / Alternating Optimization 

 

          The radar-communications co-design approach approaches the problem as a single, intertwined 

system. The radar transmit waveform/modulator, the radar receive filter, and the communications transmit 

heterodyne/modulator are redesigned simultaneously to achieve a dual goal: enhancing radar performance 

(typically by increasing detection quality or SINR) while maintaining communications quality of service 

(rate or reliability) within power, interference, and waveform similarity constraints. Because the interaction 

between these variables generates a highly correlated, non-convex problem, the Alternating Optimization 

(Block-Coordinate) framework is adopted: a set of variables is fixed, a third is optimized, and the roles are 

then swapped periodically until monotonic convergence is achieved. In practice, the sub-problems are 

solved using standard convex tools such as SDP/SOCP/SDR for the transmit layer and closed or semi-closed 

formulations for the receive filter, with the possibility of introducing clutter models and waveform similarity 

constraints to preserve the radar beam geometry. This approach is distinguished by the fact that it does not 

merely eliminate interference or shape the spectrum, but rather balances the two ends of the system in design 

through a single objective function and shared constraints, enabling the coordinated exploitation of spatial, 

temporal, and spectral degrees of freedom. In [15] formulates coexistence as a joint optimization problem, 

where the variables are the radar transmit power, the radar receive filters, and the communications codebook 

covariance matrix. The goal is to increase the mutual information MI of the communications system while 

ensuring that the radar achieves the lowest signal-to-disturbance ratio (SDR) at each resolution cell under 
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clutter. Because the problem is non-convex, the authors use a block-coordinate ascension (alternating 

maximization) approach: each variable is optimized in turn w formulates coexistence as a joint precoder–

covariance optimization under clutter. The objective is to maximize radar SINR while guaranteeing 

communication rate and power constraints. Because clutter depends nonlinearly on the radar precoder, the 

original problem is highly non-convex. To make it tractable, the authors optimize a lower bound on SINR 

using an alternating optimization algorithm: the communication covariance update is solved via one SDP, 

while the radar precoder update shown to admit a rank-one solution is solved through a sequence of more 

efficient SOCP problems. This optimization balances interference protection and clutter suppression, 

enabling robust radar–communication coexistence. In [16] paper develop coexistence in chaos as a joint 

optimization across three variables: the radar's spatial-temporal transmission waveform, the radar's receive 

filter, and the communications transmission contrast. The goal is to maximize the radar's signal-to-noise 

ratio (SINR) while attach to the communications rate and power constraints of both systems, with the 

addition of a waveform similarity constraint to keep the radar code close to the reference. Because chaos 

makes the problem non-convex, the authors use an alternating optimization: updating the communications 

contrast via convex programming, updating the radar's receive filter in a closed-form SINR, and then 

updating the radar code with an executable reformulation iteratively to monotonic convergence. The result 

is a chaos-aware joint design that significantly improves SINR robustness and coexistence compared to 

partial designs. In [17] formulates coexistence as a non-convex joint optimization of three design variables: 

the radar transmit waveform, the radar receive filter, and the communications transmit covariance matrix. 

increasing the communications throughput while maintaining the required radar signal-to-noise ratio, 

enforcing waveform similarity, and meeting power constraints is the objective of paper. Because the 

problem is non-convex, the authors developed an alternating optimization AO framework: using two fixed 

variables, the third optimizes in turn the communications covariance is updated through a convex 

logarithmic detection program, the radar filter is updated using a closed-form expression to maximize the 

signal-to-noise ratio, and the radar waveform is optimized through semi-definite relaxation with first-order 

recovery. This iterative process converges monotonically, and the results demonstrate that the joint design 

achieves higher communications throughput without compromising radar detection, outperforming single-

sided (radar-only or communications-only) designs. In [18] Coexistence is treated as an optimization for 

interference reduction. Using matrix completion (MC) radar sampling, the communication system designs 

transmission contrast matrices to minimize the effective interference power (EIP) at the radar receiver, 

taking into account average capacity and power constraints. Two optimization strategies are proposed: a 

non-cooperative approach, in which only the overall interference is minimized, and a cooperative approach, 

in which the radars share their sampling scheme, allowing for more precise interference suppression. 

Furthermore, a joint optimization of radar sampling and communication contrast is proposed, solved 

through alternate optimization, which significantly reduces the effective interference power while ensuring 

the feasibility of matrix completion. In [19] A joint optimization framework is presented that designs three 

components: the communication transmission covariance matrices , the radar transmission precoder and the 

radar subsampling scheme. The goal is to rising the effective signal-to-noise ratio (SINR) of the radar while 

satisfying communication rate and power constraints. Because the problem is non-convex, the authors 

propose an alternating optimization algorithm that sequentially solves the communication covariance (a 

convex subproblem), the radar subsampling (via allocation optimization using a Hungarian algorithm), and 

the radar transmission precoder (via sequential convex programming and SDP). This iterative scheme 

ensures monotonic convergence and shows that MIMO-MC radars, cheers to sparse sampling, can coexist 

more efficiently than conventional MIMO radars, saving up to 60% of data samples. 

 

3.4. Subspace / Power Mixing Beyond NSP, IA AND NOMA 

          This approach goes beyond the limitations of zero-space projection through two central concepts: 

interference alignment (IA) and power-domain mixing with cascade cancellation (NOMA + SIC). In IA, 
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the transmit and receive spaces are reconfigured so that interference components are packed into a low-

order space at the receiver, freeing up a clean dimension(s) for useful signal transmission. The essence of 

optimization here is to minimize the “order of the interference space” while preserving communication 

degrees of freedom and radar diversity. In [20] proposes an interference alignment (IA)-based joint 

optimization of pre-encoders and decoders for spectrum sharing. The basic idea is to minimize the rank of 

interference subspaces so that radar and communication signals occupy orthogonal spaces without 

overlapping. To ensure system performance, this optimization involves two main constraints: the 

multiplexing gain for communication users and the diversity order for radar users. Since direct rank 

minimization using rank and norm constraints is non-convex and NP (non-deterministic polynomial-time) 

hard , the problem is reduced to a fissile norm minimization with convex matrix inequality. The solution is 

obtained through mutual optimization, repeatedly updating the pre-encoders and decoders until 

convergence. Analytical estimation using GLRT and ML estimation confirms that using quasi-unitary 

encoder-decoder matrices and feasible IA, radar detection performance approaches the non-interference 

state, while communication achieves the desired spatial degrees of freedom. In [21] presents a cooperative 

NOMA scheme, in which the cellular base station redirects the radar signal and transmits user data 

simultaneously by superimposing them in the power band. At the receiver, cascade interference cancellation 

(SIC) is applied to separate the radar and communication signals. The optimization problem essentially 

consists of allocating the power parameters α0, α1,…, αK, where α0 dominates the radar component, and the 

remaining parameters dominate the user data. A high α0 improves the radar detection probability, while a 

low α0 reduces the outage probability and increases the total communication throughput. The paper derives 

closed-form outage probabilities and achievable rate bounds to attendant the selection of these parameters, 

demonstrating that appropriate power-allocation optimization leads to a balanced operating point where 

both radar detection and communication throughput are significantly improved compared to conformist 

NSP or zero-power designs. In [22] A unified framework called IACRS is presented, in which radar and 

aviation communications share spectrum using a MIMO architecture. Inspired by non-orthogonal multiple 

access (NOMA), the system synthesizes radar and communications signals into a power domain and uses 

cascade interference cancellation (SIC) at the receiver to mitigate inter-functional interference. The 

fundamental challenge is a joint optimization problem: maximizing a weighted sum of communications 

throughput and radar sensing quality (measured by SCNR) while meeting minimum data rate requirements, 

radar detection thresholds, and transmit power limits. Because the problem is non-convex and has tightly 

coupled variables, the authors propose an alternating optimization algorithm AO that decomposes it into 

two subproblems: base station transmit beamforming with power allocation, and airborne receiver 

beamforming. To address the non-convex first-order constraints, they develop a penalty-based method and 

a successive first-order constraint relaxation (SROCR) scheme. The results confirm that this integrated 

NOMA-inspired design significantly improves aerial communications reliability and radar sensing 

performance compared to standard schemes. 

 

3.5. RIS & Learning-Driven Designs / AI METHODS 

 

          This approach  address the coexistence of radar and communications across three intertwined design 

layers: a communications modulator, a radar waveform, and a reconfigurable intelligent surface (RIS) that 

modulates the phase of reflections in a controlled manner. The main point of the matter here is extreme non-

convexity with strict practical constraints (RIS element uniformity, interference limits to radar, waveform 

similarity, and power budgets), making traditional optimization methods prohibitively complex or slow in 

dynamic environments. Therefore, convex approaches are being replaced or supplemented by learning 

methods: (1) Deep Reinforcement Learning (DRL) to learn continuous policies that jointly adjust the 

transmitter, RIS, and waveform; (2) Meta-Reinforcement Learning (Meta-RL) to accelerate adaptation to 

changing channels and scenarios by leveraging past experience; and (3) Unsupervised Learning based on 
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neural networks to generate phase-coded waveforms that balance radar orthogonality and spectral notching 

without the need for supervisory data.this approach offer a balanced performance trade-off between radar 

detection quality and communication service quality in the presence of RIS. In [23] paper studies spectrum 

sharing as a joint optimization problem, where the communications precoder, radar waveform, and phase 

configuration of a smart reconfigurable surface (RIS) are designed together. The goal is to maximize the 

mutual information of the communications system while ensuring that the overall transmission power is 

consistent, that the RIS elements satisfy the unity parameter condition, that the radar-directed interference 

remains below a certain threshold, and that the radar waveform is similar to the desired reference. Because 

this problem is highly non-convex, traditional convexity optimization tools are ineffective. Instead, the 

authors employ deep reinforcement learning (DRL), specifically the deep deterministic policy gradient 

(DDPG) and double-delayed deep deterministic policy gradient (TD3), which enable the exploration of 

continuous decision spaces and the incremental learning of efficient transmission and reflection strategies. 

The results demonstrate that DRL, especially DDPG, can find solutions that maximize communication 

throughput, while RIS minimizes interference of the base station-radar, achieving a strong balance between 

radar detection and communication performance. In [24] paper addresses the coexistence issue by 

formulating a joint optimization problem for the cellular precoder, the radar transmission waveform, and 

the phase shift matrix of a reconfigurable smart surface (RIS). The goal is to maximize mutual 

communication information while adhering to power limits, radar waveform similarity, RIS unit coefficient 

constraints, and interference thresholds to protect radar performance. Since this optimization is highly non-

convex, the authors employ meta-reinforcement learning (MRL), which relies on prior learning tasks to 

quickly adapt to new environments. Unlike traditional block coordinate descent (BCD) or standard 

reinforcement learning methods such as deep deterministic policy gradient (DDPG) and TD3 (double 

deferred DDPG), the meta-reinforcement learning approach reduces training costs and converges faster. 

Simulation results confirm that combining deep reinforcement learning (MRL) with RIS deployment 

reduces interference from the base station to the radar and improves data rates, achieving better trade-offs 

compared to traditional and other deep reinforcement learning-based methods. Difference between the two 

studies is that the study [22] relies on traditional deep reinforcement learning algorithms (DDPG and TD3) 

to solve the non-convex spectrum sharing optimization problem between radar and communications using 

RIS systems, while the [23] study makes significant progress through deep reinforcement learning (Meta-

RL), which leverages past learning experiences to adapt more quickly to new environments and channel 

conditions, reducing training time and improving solution efficiency while maintaining the same goal and 

constraint optimization framework. In [24] proposes designing phase-coded, fixed-parameter MIMO radar 

waves for spectrum sharing by training a solution mapping network (SMN) end-to-end using unsupervised 

learning. Instead of manually organised solutions, the SMN outputs phase codes whose loss is defined as a 

weighted combination of three terms: the peak sidelobe level (PSL), the integrated sidelobe level (ISL), and 

a spectrometer that penalizes power within the split (forbidden) bands. The paper explicitly states that this 

formulation is minimal, non-convex, and NP-hard, motivating the use of learning as a practical alternative. 

Architecturally, the SMN uses parallel convolutional blocks (conv–ReLU–pool) followed by fully 

connected layers; random sequences are fed, phase codes are produced, and an Adam optimizer is used to 

minimize the unsupervised loss. Experiments confirm that the network can successfully sculpt spectral 

notches while maintaining waveform verticality, highlighting the balance between verticality (PSL/ISL) 

and spectral suppression (SM). In [25] When radar and communication systems encounter sparse multipath 

propagation, the main challenge is to exploit useful nonlinear echoes for radar detection while keeping 

interference to the communication link under control. To address this, the authors formulated waveform 

design as an optimization issue that maximize the radar's signal-to-noise ratio (SINR) while sufficient 

constraints on communication rate, transmission power, and waveform similarity to a reference signal. Since 

the problem is highly non-convex due to the multipath structure and the fractional target, they developed a 

suboptimal algorithm using successive convex approximation (SCA) and semi-definite programming 
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(SDP). This iterative approach gradually optimizes the radar waveform until convergence. The results 

demonstrate that by combining the multipath returns through optimized waveforms, the radar achieves 

stronger detection performance while maintaining communication quality [26]. Figure (2) shows 

Interference Channel and Optimization Methods. Table (1) provide the overall review of Optimization 

Methods. 

 

 

 
Fig. 2. Block Diagram of Interference Channel and Optimization Methods for MIMO Radar–Communication Spectrum 

Sharing 

 

Table 1. Comparative Table of Spectrum Sharing Research Between MIMO Radar and Cellular System 

Ref Optimization Approach Algorithm Used Contribution Research Gap 

[2] Power & covariance 

allocation (multi-access view) 

Successive 

Interference 

Cancellation (SIC) + 

2D water-filling 

Introduced a Multiple-

Access Channel (MAC) 

perspective for radar–

comms sharing; joint 

formulation with SIC 

decoding 

Assumes perfect CSI 

and ideal MAC; does 

not consider practical 

fading or partial CSI 

[5] Beampattern design + Null-

Space Projection (NSP) 

FACE mapping + 

spherical 

parametrization 

Integrated radar 

beampattern shaping with 

NSP to protect 

LTE/WiMAX 

Limited to perfect CSI; 

no robustness to fast-

varying channels 

[6] Null-Space Projection SVD-based 

projection 

First proposal of NSP for 

spectrum sharing to null 

radar interference 

Ignores clutter and 

partial CSI; assumes 

static channel 

[7] Channel selection + NSP SVD + best-channel 

selection 

Selects the interference 

channel with largest null-

space dimension to 

minimize radar loss 

No channel variation or 

mobile LTE 
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[8] NSP with detection analysis GLRT detection 

framework 

Analyzed impact of NSP on 

radar detection 

performance (Pd/Pfa) 

Provides no alternative 

when null-space is too 

small 

[9] Overlapped-MIMO + NSP Combinatorial 

subarray search + 

SVD 

Introduced overlapped-

MIMO structure to 

enlarge effective null-space 

for NSP 

Increases complexity; no 

validation under 

realistic fading 

[10]  Switched NSP / SSVSP Null-space & small-

SV subspace 

switching 

Proposed switched 

projection between true 

null-space and small-SV 

subspace for robustness 

Computationally heavy; 

challenging for real-time 

operation 

[11] Information-theoretic PSD 

allocation 

Convex optimization 

(PSD shaping + 

cyclic projection) 

Maximized mutual 

information with 

interference spectral masks 

No consider multipath 

fading or partial CSI 

[12] OFDM subcarrier power 

allocation 

Water-filling + 

linear programming 

Designed power allocation 

across OFDM carriers to 

balance MI and 

interference protection 

No fully address 

waveform similarity 

constraints 

[13] Information-theoretic (MI in 

clutter) 

Block coordinate 

ascent 

Maximized communication 

MI under per-cell SDR 

constraints in cluttered 

radar channels 

Assumes full CSI; does 

not treat partial or 

uncertain channels 

[14] Joint radar–comms co-design 

(SINR + rate) 

Alternating 

optimization 

(SDP/SOCP) 

Jointly optimized radar 

SINR with comms QoS 

under clutter 

High computational 

complexity; limited real-

time feasibility 

[15] Joint 

waveform/filter/covariance 

Alternating 

optimization 

Recent co-design balancing 

radar SINR and comms 

QoS 

No robustness analysis 

for fast-varying or 

incomplete CSI 

[16] Joint SINR–rate optimization Alternating 

maximization + SDR 

Improved comms rate 

while preserving radar 

SINR 

Relies on convex 

relaxations with high 

computational cost 

[17] Matrix Completion + 

precoding 

Alternating 

optimization 

Introduced matrix 

completion for radar with 

precoder co-design 

Strong sparsity 

assumption; sensitive to 

incomplete CSI 

[18] Joint sampling + precoding Hungarian 

assignment + SDP 

Combined radar 

subsampling with comms 

covariance optimization 

Heavy complexity; 

requires centralized 

solver 

[19] Interference Alignment (IA) Nuclear norm 

relaxation + 

alternating 

optimization 

Applied IA to minimize 

interference subspace rank 

Needs perfect CSI; 

fragile to channel 

mismatch 

[20] NOMA power allocation Closed-form outage 

analysis + SIC 

Introduced cooperative 

NOMA-based sharing 

balancing radar Pd and 

comms sum-rate 

Depends on perfect SIC; 

performance degrades 

with noise 

[21] NOMA-inspired joint 

beamforming 

Alternating 

optimization + 

SROCR (rank 

relaxation) 

Proposed integrated design 

(IACRS) using NOMA-like 

superposition and SIC 

Needs practical 

validation in airborne 

fading scenarios 

[22] Joint radar/comms/RIS 

optimization 

Deep Reinforcement 

Learning 

(DDPG/TD3) 

Used DRL to jointly tune 

radar waveform, comm 

precoder, and RIS 

Sample efficiency and 

training stability remain 

challenges 

[23] RIS + Meta-RL Meta-reinforcement 

learning 

Achieved faster adaptation 

of RIS phases and 

precoders 

Limited experimental 

validation; focus on 

simulation 
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[24] Neural phase-coded 

waveform design 

Unsupervised CNN 

solution mapping 

Generated constant-

modulus, phase-coded 

radar waveforms with 

spectral notches 

Still experimental; lacks 

hardware validation 

[25] Multipath-aware SINR 

waveform design 

Successive convex 

approximation + 

SDP 

Designed SINR-oriented 

radar waveform exploiting 

multipath 

High complexity; not 

suitable for real-time 

scenarios 

 

 

 

4. CONCLUSIONS 

 

 

          Recent studies of coexistence methods between radar and communications systems have shown that 

formulating the problem as an optimization problem is the most effective path to achieving coexistence 

without sacrificing the performance of either system. Approaches have progressed from traditional solutions 

based on null-space projection to more complex models such as information-theoretic optimization and joint 

co-design using reciprocal optimization algorithms, to more advanced techniques such as interference 

alignment, power domain spectrum sharing (NOMA), and modern designs supported by reconfigurable 

smart surfaces (RIS) and deep reinforcement learning (DRL/Meta-RL) algorithms. Some research has also 

addressed practical scenarios such as multipath channels or missing channels, which are addressed using 

matrix completion methods. These developments reflect the field's transition from idealized models 

assuming full CSI and simplified Rayleigh channels to more realistic environments involving Rician LoS, 

clutter, and practical constraints such as spectral similarity or power.  Based on this, it can be argued that the 

future direction revolves around integrating artificial intelligence and machine learning tools with classical 

optimization frameworks to reduce computational complexity and accelerate the achievement of near-

optimal solutions in dynamic and complex environments. Furthermore, the integration of rigorous 

mathematical models and data-driven learning will provide a more flexible platform for addressing new 

challenges in coexisting radar and communications systems, especially with the increasing demand for radio 

spectrum for future applications such as airborne radars, autonomous vehicles, and 6G networks. 
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