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Abstract. The goal is to compare deep learning and classical methods for automated ECG beat 

classification in a rigorous inter-patient evaluation. Band-pass filtering, baseline correction, Kalman 

denoising, and QRS detection using the Pan-Tompkins algorithm were applied to 48 half-hour, two-lead 

recordings from 47 subjects from the MIT-BIH Arrhythmia Database. Discrete wavelet transforms 

features fed a tree-based baseline (random forest, RF) following R-peak segmentation were compared to 

a convolutional neural network (CNN). Per-class precision/recall/F1, macro-F1, and ROC-AUC/PR-AUC 

with 95% bootstrap CIs were reported. In a four-class setup (atrial fibrillation, normal, other rhythms, 

and noise), RF obtained macro-F1 ≈ 0.70 and CNN macro-F1 ≈ 0.59. AF↔Other, Noise↔Other, and 

Noise↔AF were the most commonly confused terms. In inter-patient evaluation, RF serves as a 

competitive baseline. Comparability across studies is improved by PR-centric evaluation, standardized 

reporting, and clear preprocessing, especially when there is a class imbalance. 
 

Keywords: classification; Machine learning; Arrhythmia detection; Deep learning; Signal 

processing. 
 

 

 

 

1. INTRODUCTION  

 

Text An electrocardiography (ECG) is a recording of electrical activity of the heart and a central 

part of cardiovascular disease diagnosis and management. Irregularities in ECG waveforms are good 

predictors of rhythm disorders (arrhythmias). An average cardiac cycle has the following waves; the P 

wave (atrial depolarization), the QRS complex (ventricular depolarization), and the T wave (ventricular 

repolarization) [1]. 

Although most early methods regarded ECG signals as being stationary and primarily used 

frequency-domain analysis as their approach, recent research highlights the fact that they are actually non-

stationary, i.e. spectral contents change with time [2]. Simultaneously, technological improvements in 

digital sensing and computing have increased the size of ECG devices and data-acquisition systems and 

boosted the creation of computer-aided diagnostic pipelines. The presence of substantial and well-

structured ECG data has also allowed more progress in arrhythmia detectors in design and assessment [3]. 

The ECG beat classification generic workflow presented in Figure 1 comprises four stages, namely 

signal preprocessing, heartbeat (beat) detection, feature extraction, and classifier development [4]. A four-

class beat taxonomy, including atrial fibrillation (AF), normal sinus rhythm (N), remaining rhythms (O), 

and noise, is used in this work. This taxonomy is used continuously in data partitioning, training and 

evaluation. Also to put it into perspective, previous literature usually lists five-beat labelling (e.g., atrial 

premature contraction (A), right bundle block (R), left bundle block (L), and premature ventricular 

mailto:fatimah.albadiri.ms9@student.atu.edu.iq
mailto:heyam.marzog@atu.edu.iq
mailto:fatimah.albadiri.ms9@student.atu.edu.iq
https://doi.org/10.46649/fjiece.v4.2.11a.24.9.2025
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contraction (V) in addition to normal); in this case we map such beat types into the other category of 

rhythms unless stated otherwise. 

 
Fig. 1. General scheme of classification of electrocardiogram. 

 

The effective deployment of the ECG analysis methodology relies on the correct amplitude and 

timing-indicators to support the expert and automated pipelines [5]. Beat discrimination can use tree-

based featuring classifiers (e.g., random forests), fed by RR-interval and transform-domain descriptors 

(e.g., DCT/DWT) [6,7], and modern neural networks (e.g., CNNs) use features directly in the waveform. 

The reported headline accuracies differ broadly among studies as they are based on data set composition 

and, most importantly, whether it is intra patient testing or the more realistic inter-patient (patient-

exclusive) testing (patient-only) [8]. In order to have fair comparison in the imbalance of classes, we 

highlight macro-F1 and PR-AUC with per-class precision/recall/F1. 

The principal findings of the research will be as follows:  

1. Kalman filtering and DWT are combined to perform the problem of ECG denoising. 

2. the performance of the random forest and CNN classifiers are compared. 

3. a knowledge distillation framework is implemented in order to achieve better results in 

ECG classification. 

 

2. DATABASE 

 

The construction of the ECG classification model usually incorporates the division of the set of data into 

two rather different parts: a training set (D1 or DS1) and a testing one (D2 or DS2). This division gives 

equal ratio of heartbeat classes and patient groups. The information division is based on an between-

patient design, in which the subjects used in training and testing are totally separate, and hence, data 

leakage and bias in the assessment of model performance are avoided [9]. 

 

The 48 half-hour ECG records in MIT-BIH Arrhythmia Database are categorized into two mutually 

exclusive subsets DS1: training, and DS2: testing [10]. This design allows model training and tuning to be 

done on a cohort of subjects and testing on a separate cohort which enhances the ability of the model to 

generalize to unknown data. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Database. 
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3. MACHINE LEARNING 
 

As a subfield of artificial intelligence machine learning (ML) develops mathematical programs 

which analyze substantial datasets to produce logical decisions. Through statistical analysis and 

computational modeling machines can recognize data patterns as they learn performance improvement 

from practical experience rather than manual programming [11]. The fundamental process in ML begins 

with model training because algorithms utilize labeled or unlabeled data to learn from. (entity learning 

method uses labeled datasets to predict sample outputs but unsupervised algorithms detect hidden patterns 

in unlabeled information. The decision optimization mechanism in reinforcement learning operates based 

on reward-based feedback [12]. 

The different sectors employ machine learning technology to benefit from natural language 

processing (NLP) along with financial market forecasting medical diagnostics and autonomous systems 

implementation. The use of deep learning approaches has led to major improvements in automated 

language translation systems which now offer better contextualized translations [13]. Predictive analytics 

powered by ML plays a fundamental role in stock market analysis because it uses historical data to 

recognize patterns and generate future price predictions according to [14]. 

The healthcare field uses ML algorithms to diagnose medical issues through the examination of 

images and the identification of anomalies while helping predict diseases. The diagnostic accuracy of 

cancer and diabetic retinopathy detection relies on convolutional neural networks (CNNs) according to 

research presented in [15]. 

The diverse strengths of ML come with several obstacles which consist of data biases together 

with complexities in model interpretation and computation processes. Scientific teams work to find 

solutions which enhance the strength and ethical aspects and operational efficiency of ML models when 

applied in practical settings [16]. 
 

 
 

Fig. 3. Different between data science, artificial intelligent, statistics and machine learning. 

 

Machine learning model can be categorized into three general types as shown in “Fig. 4”. 
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Fig. 4. Family of Machine learning. 

3.1 Supervised Learning 

 

1. The machine learning process of supervised learning trains algorithms through the use of 

datasets that have labeled inputs alongside their corresponding outputs. Such training 

allows the model to study historical datasets which helps achieve correct future predictions. 

The system acquires classification features for pictures by processing images that human 

annotators have labeled as "girl" [17]. Supervised learning algorithms execute their 

processes as demonstrated in Figure 3. Multiple supervised learning techniques which are 

commonly used will be examined in this section. 

2.  Decision Tree: The classification method known as decision trees uses hierarchical 

structures to arrange data attributes according to their values. Naïve Bayes exists primarily 

to categorize different information types. Each node in the tree stands for an attribute while 

branches depict potential values that attribute can achieve. Both medical diagnosis together 

with credit risk assessment and customer segmentation make extensive use of decision 

trees which are actively applied in various real-world domains [18]. 

3. Naïve Bayes: The Naïve Bayes classifier works as a probabilistic system which specifically 

addresses text classification needs and serves for clustering operations and spam detection 

tasks. The classifier operates using Bayes' theorem to determine probabilistic values when 

each feature maintains a separate relationship to other features. The basic nature of Naïve 

Bayes allows it to deliver outstanding results in 4) Support Vector Machine (SVM) 

applications.  

4. The Support Vector Machine (SVM) represents one of the leading advanced classification 

methods which machine learning practitioners use extensively. SVM finds the best possible 

hyperplane to create the largest distance space between different classification areas. The 

method uses margin-based principles to reduce classification mistakes as well as improve 

model ability to generalize. SVM exhibits superior performance in various fields such as 

image recognition as well as bioinformatics and handwriting recognition [23]. such as 

sentiment analysis and document classification [19]. A Bayesian Network representation 

exists for the model while preserving the probabilistic variable relationships [20][21][22]. 

5. Logistic Regression: Logistic Regression represents a supervised learning method 

dedicated to creating binary classifications. The model generates output probabilities which 
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range from 0 to 1 for determining the membership of an input to a particular class. A 

prediction system identifies how many images have men and women along with babies. 

The logistic (sigmoid) function transforms prediction outcomes into probabilistic 

categories because of its suitability for categorical outputs [24]. 

6. k-Nearest Neighbors Algorithm (k-NN): The k-Nearest Neighbors (k-NN) serves as a basic 

non-parametric approach for supervised learning that enables classifications together with 

regressions through its data management tasks. Unlabeled data points find their categories 

through k-NN by selecting the nearest 'k' labeled data points in the feature space that use 

distance measures such as Euclidean distance. The performance of the model depends 

directly on the value selection of 'k' which represents any positive integer. The k-NN seeks 

the 'k' nearest neighbors from each unlabeled instance to determine the most frequent class 

assignment [25]. 

 

3.2 Unsupervised Learning 

 

Without supervised control algorithms search for patterns within datasets that contain no 

predefined class specifications. These algorithms can perform several tasks which include clustering 

applications and association rule learning followed by dimensionality reduction. Unsupervised learning 

analyzes customer buying patterns to discover which products frequently accompany other items through 

its examination of data in e-commerce recommendation systems [26]. 

1. K-Means Clustering: This unsupervised learning method divides data points between 'k' 

clusters through feature similarity assessments. A part of the iteration process takes each 

data point to its correct cluster while reducing the variance within groups. Each product 

placed inside its cluster becomes similar to all cluster members but less comparable to 

items in different clusters. Prospective users find K-Means valuable for market 

segmentation together with image compression and pattern recognition applications [27]. 

2. Principal Component Analysis (PCA): By using Principal Component Analysis (PCA) we 

can transform data of many dimensions into reduced dimensions while maintaining most 

dataset variability. PCA analyzes data to identify principal components that represent 

maximal variance which subsequently simplifies datasets and speeds up computations and 

removes noise effects. PCA has strong applications in visualizing data structures as well as 

removing noise when preparing data for subsequent machine learning modeling processes 

[27]. 

 

3.3 Reinforcement Learning 

 

The learning process of Reinforcement Learning (RL) allows agents to build optimal decision 

solutions through environmental interactions. The system receives a mark-up or a penalty from the 

environment which helps direct its behavior adjustment. An RL agent operating in autonomous driving 

learns its safety protocols through reward feedback that gives it points for staying in its lanes yet deducts 

points for deviating from the path. 

 

4. CLASSIFICATION OF ECG SIGNALS 

 

Detecting and diagnosing different cardiac arrhythmias requires immediate classification of ECG 

signals. Alternative analysis methods for ECG signals enable doctors to detect irregular heart rhythms and 

perform correct classifications. 
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Experts in cardiology fields currently use their eyes to study ECG waveforms for classifying 

multiple arrhythmia types. Computational technique development has improved both the classification 

speed and accuracy rates leading to earlier detection abilities in myocardial infarction (MI) and ischemic 

heart disease [29].  

 

Quantitative analysis of ECG abnormalities is now achieved through artificial neural networks 

(ANNs) and mathematical models developed with artificial intelligence (AI) and machine learning (ML) 

advances. The detection of fiducial points starts with identifying the QRS complex because this essential 

point helps determining cardiac conditions during analysis. For the past four decades researchers have 

continuously worked on QRS detection because it stands as the essential step toward successful ECG 

classification [28]. The acquired and preprocessed ECG signal enters the classification algorithms which 

identify and separate the signal into various arrhythmia groupings. Two categories of ECG classification 

algorithms are discussed in this section: traditional and machine-learning-based approaches. 

 

4.1 Traditional ECG Classification Approaches  

 

The initial classification methods used threshold-based analysis to classify ECG signals as either 

normal or abnormal. Researchers improved adaptive threshold approaches by using the Pan-Tompkins 

algorithm that stands as a strong tool for QRS detection [30]. 

The use of wavelet transform methods involves DWT with PCA and ICA integration to extract 

significant features from ECG signals [31]. The Multi-Model Decision Learning (MDL) algorithm 

achieves high sensitivity values up to 100% for distinguishing between normal and abnormal ECG signals 

when analyzing data from the MIT-BIH Arrhythmia Database thus becoming a reliable traditional method 

for classification [32]. 

The model learns to map input features to predefined output classes. Unsupervised Learning: This 

technique focuses on detecting patterns and structures in unlabeled data without predefined classifications. 

The ECG classification has benefited from supervised learning algorithms including k-Nearest 

Neighbors (k-NN) and Naïve Bayes and Decision Trees as well as Support Vector Machines (SVM) and 

Artificial Neural Networks (ANNs). The algorithms need precise feature selection methods to obtain 

important information from ECG signals according to [34]. 

 

4.1.1 Decision Tree-Based Classification 

 

Decision trees represent one of the primary methods used for ECG classification through tree-

based algorithms to produce trained and tested models. The preprocessed ECG features serve as inputs to 

decision tree classifiers used for training purposes. Decision trees operate efficiently to perform 

classifications and predictions, cluster data correctly within ECG analysis systems. 

The J48 Decision Tree Algorithm stands out among different decision tree solutions as it excels 

with high-dimensional data analysis while offering straightforward implementation capabilities. The J48 

algorithm creates optimized decision trees through its pruning method which enhances the classification 

results [35]. 

The Classification and Regression Tree (CART) algorithm stands as a standard tool in ECG 

classification as it develops binary decision trees which separate between normal and abnormal heart 

rhythms [36]. The research of Iryna Mykoliuk et al. incorporated a decision tree algorithm which operated 

as a part of their machine learning-based ECG classification system [37]. The initial implementation 

started with the random forest algorithm which proved effective due to its divide-and-conquer rule that 

supports parallel processing and fast training at an average of a few seconds. Random forests provide 

efficient optimization of tree configurations because of their distinctive property. The classification 
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required a random forest model containing 60 decision trees. The implementation of the model and 

evaluation used the Scikit-learn library. Table 1 shows random forest algorithm performance by 

measuring different class precision, recall and F1-score metrics. 

 
Table 1. Performance Metrics of the Random Forest Model. 

Class Identifier Precision Recall F1-

Score 

1 0.77 0.67 0.72 

2 0.73 0.75 0.74 

3 0.64 0.68 0.66 

4 0.68 0.61 0.65 

Average/Total 0.7 0.7 0.7 

 

The classification system used a convolutional neural network (CNN) design with the network 

architecture performing feature extraction before the fully connected layer made final classification 

choices. The results of CNN model classification performance can be found in Table 2. 

 
Table 2: Performance Metrics of the Neural Network Model 

 

 

 

 

 

 

 

According to the design the classification system has four distinct ECG signal categories serving 

as classification indicators. These categories include Atrial fibrillation and Normal sinus rhythm as well as 

Other cardiac rhythms and Noise signals. 

• Class 1: Atrial fibrillation 

• Class 2: Normal sinus rhythm 

• Class 3: Other cardiac rhythms 

• Class 4: Noise signals 

• Evaluation Metrics 

Performance assessments of the model relied on an evaluation metrics framework. 

1. The classification accuracy is measured through Precision by determining true positive predictions 

against total predicted positives. 

2. Recall represents the proportion of real positive cases that the model correctly identifies out of all 

actual positive conditions. 

3. The F1-Score combines precision and recall by using this calculation: 

𝐹1 =
2 × Precision × Recall

Precision + Recall
                                                (1) 

The metric allows impartial assessment of precision together with completeness across all ECG 

classes. The F1-score computation applied to the three principal diagnostic groups including atrial 

fibrillation, normal sinus rhythm and other cardiac rhythms alone. 

The random forest algorithm obtained superior results than the CNN model by delivering a F1-

score value of 0.70 while CNN provided a score of 0.59. ECG signal classification abilities are 

Class Identifier Precision Recall F1-

Score 

1 0.58 0.26 0.36 

2 0.65 0.94 0.77 

3 0.6 0.28 0.38 

4 0.47 0.03 0.06 

Average/Total 0.62 0.64 0.59 
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demonstrated by decision trees which perform especially well while maintaining computational efficiency 

standards. Thus, the final result of the pattern is a rate of F1 degrees for 3 cases. 

𝐹1 =
𝐹1(𝐴𝐹)+𝐹1(𝑁)+𝐹1(0)

3
                                                  (2) 

 

4.1.2 Naïve Bayes Classifier 

 

Dr. S. Padmavathia and E. Ramanujam proposed the implementation of the Naïve Bayes algorithm 

to identify ECG signals through normal or pathological categories because of its specific approach.  

Naïve Bayes classifiers function as statistical classifiers to calculate data point category 

membership probabilities by determining which category each point belongs to [38]. Large datasets 

experience exceptional accuracy and fast computational performance when Bayes classifiers are applied 

to them. The Naïve Bayes classifier analyzes which features matter most for classification outcomes 

through an evaluation that ignores other present features.  

The simplification algorithm depends upon this assumption that is known as category conditional 

independence to become "naïve."S. T. Aarthy and J. L. Mazher Iqbal also proposed using the Naïve Bayes 

method for ECG signal classification. Their approach was effective in real-time ECG classification using 

Naïve Bayes combined with fuzzy logic for disease prediction. Initially, the method reads the available 

ECG signals and removes noise. Then, the relevant features are extracted from the graphical 

representation of the signals. Any faulty or missing signals are discarded from the dataset before 

proceeding to feature extraction. 

A fuzzy-based disease classification system is built using extracted features after successful 

preprocessing termination. The proposed calculation method derives conditional probabilities through the 

association of features inside the fuzzy system. The process of disease classification or prediction relies on 

MFSS to evaluate signal similarities for diagnosis purposes. The obtained MFSS values help calculating 

cardiac disease procumbent weight (CDPW) for distinct categories before performing classification 

through CDPW values [39][40] . 

The artificial neural network (ANN) functions by connecting interlinked neurons which use 

activation functions to calculate their outputs based on differences among input attributes. The adjustment 

of output depends on modifying both the weight and activation function after assigning a weight to an 

input. Output adjustments from the learning process get established according to original input values. 

The essential components of an ANN include: 

• Neurons, where each neuron (j) receives an input signal Pj(t)  from previous neurons at a 

discrete time step t. 

• Activation function aj(t), which determines the neuron's response. 

• Threshold value, which remains unchanged unless the learning rate is modified. 

• A function f that computes the updated activation state aj(t + 1)based on previous activation 

and input values, expressed as: 

aj(t + 1) = f (aj(t), Pj(t)) θ                                (3) 

• Finally, the output function Oj (t), is derived accordingly. 

𝑂𝑗(t) = f 𝑜𝑢𝑡 (𝑎𝑗(t))                                            (4) 
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• Weight and bias All neurons hold a one-to-one mapping relation between their elements and 

single weight values. The subscripts i and j in wij represent previous neuron output and input 

neuron respectively.  

• The subscripts indicate input neurons through (i) while the subscripts (j) indicate to the output 

neuron. Through change of the weight adjustment helps us to enhance performance results.   

• Bais expression is the outcome from adding all input weights translates into an activation 

function which functions as the step serves as threshold that results in transfer processing 

through the activation function [1][2]. 

• Propagation Function The main purpose of propagation function rests in calculating the 

differences between predicted and actual output values. A crucial part of weight adjustment in 

error reduction and prediction accuracy enhancement occurs through this function. The 

propagation function establishes its mathematical definition as follows: 

𝑃𝑗(𝑡) = ∑ 𝑜𝑗(𝑡)𝑤𝑖𝑗 + 𝑤𝑜𝑗                                               (5) 

where 𝑤𝑖𝑗 =  weight of the input neuron; 𝑤𝑜𝑗 =  bias term 

 
  

Fig. 5. Neural Network System. 

 

4.1.3 Deep Learning (DL)  

 

The process of developing complex models through large datasets known as training data 

constitutes Deep Learning (DL). Deep Learning includes the analysis of information extraction together 

with intelligent decision-making and predictive modeling. Deep Neural Networks (DNNs) provide better 

scalability and flexibility than traditional machine learning methods by deepening networks or adding 

training dataset points to enhance precision [12].  

Most conventional learning systems encounter challenges with advanced applications as they need 

large amounts of labeled data for efficient generalization. The broad adoption of deep learning occurs 

across multiple sector applications which include object detection alongside biometric authentication and 

image classification and computer vision systems. ECG arrhythmia detection proves most effective in 

cardiology when Deep Convolutional Neural Networks (Deep-CNNs) are applied according to research 

[42]. 

 

• Multilayer Perceptron (MLP): Multi-layer Perceptron (MLP) functions as a prevalent supervised 

neural network which handles advanced learning operations. Multiple neuron layers composed of 

interconnected components form the basic structure of MLPs that work along a feed-forward 



    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 4
, 

Is
su

e:
 2

, 
S

ep
te

m
b

er
, 

2
4

, 
2
0

2
5

, 
©

 2
0

2
0

 F
JI

E
C

E
, 

A
ll

 R
ig

h
ts

 R
es

e
rv

ed
  

157 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

system. The processing of weighted inputs by each neuron produces an output through a nonlinear 

activation function. Researchers use MLPs as a standard tool for solving classification together 

with regression problems [14]. 

• Convolutional Neural Network (CNN): The Convolutional Neural Network (CNN) works as a 

popular deep learning architecture through training based on gradient-based optimization methods. 

A Convolutional Neural Network being built by multiple sequential layers functions with a feed-

forward arrangement. Its main layers include: 

▪ Convolutional Layer – Extracts spatial and hierarchical features from input data. 

▪ The Pooling Layer maintains key features by combining data while it decreases the 

dimensionality of input data. 

▪ Normalization Layer – Enhances learning stability. 

▪ Fully Connected Layer – Responsible for the final classification. 

Feature extraction functions at the first three layers but the fully connected layer executes the 

classification step. CNN stands as an extension of MLP which includes convolutional operations to learn 

spatial object hierarchies in data. Medical images and ECG signals benefit from CNN performance 

enhancement because the networks can extract vital features by themselves [43]. 

 

 
 

Fig.6. Architecture of convolution Neural network. 

 

• Deep Belief Network (DBN): A Deep Belief Network (DBN) integrates numerous levels of 

Restricted Boltzmann Machines (RBMs). DBNs function as advanced learning platforms which 

implement temporal random variable transformations. Multiple RBM layers build these networks 

to transmit input data from one layer to the next [44]. DBN training adopts a stratified strategy 

which trains Restricted Boltzmann Machines beginning from the base layers up toward the 

superior layers. The RBM model functions as an undirected probabilistic graphical model which 

processes binary random variables exceptionally well in the analysis of binary valuated data [45]. 

In an RBM the visible layer functions as an input data representation while the hidden layer 

performs feature extraction together with pattern detection. The network displays weighted link 

connections between consecutive layers that are labeled as wij in Figure 8. There are no relationships 

between individual nodes positioned in the identical layer. [46]. The basic unit of RBM called Boltzmann 

Machine forms Markov random fields through symmetrical networks made of binary stochastic units. 
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Fig. 7. Restricted Boltzmann Machine architecture. 

 

4.1.4 Echo State Network (ESN) 

Echo State Networks function as the dominant method of implementing Reservoir Computing 

(RC) yielding successful application across many tasks [47]. 

Miquel Al Faras et al. and other researchers have enhanced the ESN model through ring 

connection modifications that improve its performance [48]. The classification application of ESNs 

utilizes a methodology which combines ensemble-based learning with raw ECG waveforms and 

heartbeats time intervals as input information [49]. 

 

5. STRUCTURE AND FUNCTIONALITY OF ESNS 

 

ESNs consist of three layers: 

1. The input layer accepts the delivered input signals. 

2. The reservoir layer exists as a random connection and weight-based recurrent neural 

network. 

3. The reservoir utilizes the transformed features to produce predictive outputs through its 

output layer. 

ESN performs context-specific calculations because the reservoir behaves as a dynamic system 

which uses previous states to influence current computations [50]. 

The main advantage of ESNs occurs from their ability to perform high-dimensional nonlinear 

input data mapping. The transformed reservoir responses become easier to classify by using simple linear 

regression models according to [51]. 

The initialization process of the reservoir during ECG signal processing requires ECG data input 

through a random input matrix 𝑊𝑁×𝑑
𝑖𝑛  the range from -1 to 1 functions as the interval for uniform 

distribution values. Transformation occurs to the original ECG feature vector 𝑢×𝐻𝑏 through a specified 

mathematical expression. 

𝑋𝑁×𝐻𝑏
 = 𝑊𝑁×𝑑

𝑖𝑛 × 𝑢𝑑×𝐻𝑏                                                                (6) 

The reservoir-system processes real-time signals through its continuous state updates which rely 

on the stored previous responses [52]. 

 

6. METHODOLOGY  

 

The proposed ECG signal classification method is composed of a few primary steps that comprise 

data pre-processing, feature extraction, dataset balancing, model training and evaluation. 

As an experimental dataset, the MIT-BIH Arrhythmia Database was utilized. The frequencies of 

the classes in this database are very disproportionate and therefore, as a method of balancing the sampled 

sizes of the classes during training, random oversampling was used. This was done to make sure that the 
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minority heartbeat groups were equally represented and would make the models to learn the 

discriminative features better. The data were stratified split into inter-patient (DS1/DS2), preserving the 

equal proportions of the labels. Such an arrangement enabled an effective assessment and reduction of 

information loss between training and testing data. 

The proposed framework adopts a knowledge distillation framework that involves two 

convolutional neural networks (CNNs) which consist of a teacher model and a student model. The teacher 

model is a more complex 1D-CNN that consists of several convolutional layers that contain batch 

normalization and max-pooling, and there are additional dense layers and a softmax output layer with four 

heartbeat classes. The student model is a light CNN consisting of fewer convolutional layers and a dense 

compressed head. The student model is trained with softened output probabilities by the teacher, as well 

as on the true labels. The overall loss is a summation of the KullbackLiebner divergence between the 

teacher and student outputs and the regular cross-entropy loss. Validation has been done to tune the 

temperature and weighting parameters to optimize knowledge transfer. 

The Adam optimizer was used to train the models with a learning rate of 0.001, a batch size of 

128, and 400 epochs. To avoid overfitting, early stopping was used to track the validation macro-F1 score. 

Accuracy, precipacity, recall, and F1-score on each of the classes, macro- and micro-averaged 

scores were used to assess model performance to control the imbalance in the classes. A confusion matrix 

was created as well to visualise the misclassification between the categories of heartbeat. The procedure 

of work are explained in block diagram as shown in figure (8). the steps of the system when entering data, 

processing it, and then classifying it. After obtaining the results, the system will be applied with real data 

as shown in Figure (8). 

 
Fig. 8. The procedure of our work 
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7. RESULTS 

 

Overall test performance. The model performed Loss = 0.3296, Accuracy = 0.9470, Precision = 

0.9490 and Recall = 0.9458 on the held-out test set. These scores represent balanced behavior: low false 

positive (high precision) and high sensitivity to true beats (high recall).  

Learning curves (Figure 9). Left panel (Training and Test Loss): The training loss gradually drops 

over 400 epochs and nearly goes to zero. The loss to test ratio decreases rapidly in the early 100 epochs, 

followed by irregular fluctuations in the range of 0.30-0.35 including a gradual upward trend, which 

indicates the beginning of overfitting in the subsequent epochs. Right panel (Training Metrics): Training 

accuracy, precision, and recall are increasing very fast and approaching 1.0. Accuracy of the test increases 

to approximately 0.90 at approximately epoch 60, after which, accuracy increases gradually and gets 

steady to some level 0.94-0.95, similar to the final accuracy (0.9470). Most of the training period has 

precision being slightly greater than recall, which happens when classes are imbalanced. 

 
Fig. 9. Left=Training vs. test loss in 400 epochs. Right-Training accuracy/precision/recall and test 

accuracy of 400 or more epochs. 

 

8. DISCUSSION 

 

Generalization. The change in the divergence between the learning and the objective loss after 100 

epochs (Figure 9, left) shows that the model begins to be sensitive to training-specifics. Practically, the 

inclusion of either early stopping on a validation set, learning-rate scheduling, or a touch more powerful 

regularization (e.g. dropout/weight decay) would probably identify the best generalization point and 

prevent the test loss decreases occurring in late epochs. 

Class imbalance behavior. Figure 9 (right) metric trajectories indicate that the classifier can be 

described as slightly conservative, where precision is always high than recall. In order to recall minority 

classes without degrading the precision of the overall performance, we can use ablations using a 

combination of these options: **synthetic oversampling (e.g. SMOTE) or class weights or a cost-sensitive 

objective. 

Recommended reporting.For completeness, include: 

 

• A table with precision, recall, and F1 of the per-class (as well as macro and micro averages). 

• a confusion matrix of final model. 
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PrecisionRecall curves per class (Optional) To show how it behaves on rarer categories. 

Summary. The model provides good test results (Accuracy =0.947, Precision =0.949, Recall 

=0.946). The Figure 1 curves indicate simple fixes, less drastic regularization, and imbalance specificity, 

which can also be improved further to obtain better generalization and sensitivity to the minority classes. 

 

 

9. CONCLUSIONS 

 

We compared a 4-class ECG beat classifier based on feature-based Random Forest (RF) and a 1D-CNN in 

the presence of an inter-patient test with shared preprocessing. A balanced model (Accuracy = 0.947, 

Precision = 0.949, Recall = 0.946) provided the best model. Macro-F1 (per-class) of RF 0.70 and CNN 

0.59 with most of the confusions in the form of AF addingOther and Noise adding (AF/Other). 

Comprehensively, an adjusted tree-based baseline is very competitive with a lightweight CNN in case of 

class imbalance. 

 

Following up on the existing inter-patient evaluation system with four classes, a number of research 

hypotheses could be suggested in the further work: 

 

1. External validation: In order to test the robustness and generalizability of the developed pipeline, 

the pipeline will be tested on other ECG databases whose noise properties are different. 

 

2. Prospective: Clinician-in-the-loop studies will be performed to assess clinical usefulness, 

integration in workflow, and applicability in the real world. 

 

3. Harmonizing imbalance: Various methods like class weighting, focal loss and data-level balancing 

will be systematically compared to enhance minority-class recall without affecting precision. 

 

4. Model calibration and uncertainty estimation: Improved model calibration (e.g., Expected 

Calibration Error) and quantification of uncertainty are going to be studied to allow making risk-

perceptive decisions. 

 

5. Explainability: Signal-conscious interpretability methods (e.g., saliency visualization of ECG 

waveforms) will be included to make models more transparent and clinically trustworthy. 

 

6. Ablation and optimization: Intensive ablation experiments will be carried out on preprocessing 

techniques, network architecture depth and regularization techniques. Reproducible 

hyperparameter optimization will also be put in place. 

 

7. On-deployment: System profiling and optimization will be conducted on embedded and edge 

hardware environments in order to obtain efficient on-device inference with low latency. 

 

8. Reproducibility: It will be publicly available to achieve any level of reproducibility by making all 

code, configurations, and fixed DS1/DS2 subject lists publicly available in order to enable fair 

benchmarking in future studies. 
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