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Abstract. Wireless Sensor Networks (WSNSs) are widely used in various applications, yet they
remain limited by the energy constraints of sensor nodes. This review paper explores and compares recent
advancements in energy-efficient routing strategies across four major categories: Q-Learning-based
routing, traditional optimization algorithms, clustering-based protocols, and sleep scheduling techniques.
Each approach is analyzed in terms of its methodology, simulation environment, performance metrics, and
limitations. Q-Learning techniques provide adaptive and intelligent routing decisions but often lack real-
world deployment. Traditional algorithms such as Ant Colony Optimization (ACO) and Whale
Optimization Algorithm (WOA) offer reliable clustering but adapt poorly to dynamic environments.
Clustering-based protocols, especially those integrating fuzzy logic or quantum methods, show strong
results in simulations but assume static and homogeneous nodes. Sleep scheduling and duty cycling
protocols significantly reduce idle energy waste, yet are rarely integrated with routing layers. The review
identifies that most current protocols are evaluated only through simulations and face challenges such as
congestion near sinks, lack of cross-layer integration, and scalability under heterogeneous conditions.
Future research should focus on building lightweight, real-time learning frameworks that jointly optimize
routing, clustering, and sleep scheduling in practical deployments.

Keywords: Wireless Sensor Networks; Energy Efficiency; Q-Learning; Sleep Scheduling; Duty
Cycling; Network Lifetime.

1. Introduction

Wireless Sensor Networks (WSNSs) represent a cornerstone in the architecture of intelligent
systems, enabling real-time environmental perception, data acquisition, and decision-making across
diverse application domains such as environmental monitoring, industrial automation, smart cities,
precision agriculture, and healthcare systems [1],[2]. A typical WSN consists of numerous spatially
distributed, low-power sensor nodes that autonomously sense, process, and transmit information to a
centralized base station or sink node. These nodes are often deployed in inaccessible or harsh
environments and are typically powered by limited-capacity, non-rechargeable batteries, making energy
efficiency a critical design constraint [3],[4]. As shown in Figure 1[5], a standard WSN topology includes
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multiple sensor nodes (SNs) communicate wirelessly with neighbouring nodes and forward data either
directly or via multi-hop routing to the base station (BS). These nodes continuously perform sensing, data
aggregation, and communication tasks, each of which contributes to energy consumption at different rates.
Notably, wireless communication remains the dominant energy consumer, especially during idle listening,
redundant data forwarding, and suboptimal routing decisions [6],[7].

Cluster Head
Sensor Node

Cluster 1

Cluster 2

Cluster 3

FIGURE 1. Wireless sensor network's general structure [5].

To address the energy shortage problem, recent research has explored multiple complementary
strategies at different layers of the network protocol stack. Among the most promising developments are
reinforcement learning (RL)-based routing protocols, particularly those using Q-Learning, which enable
sensor nodes to dynamically learn optimal routing paths by interacting with the environment and receiving
feedback based on remaining energy, distance, and transmission success [8]. Traditional optimization
algorithms, such as ant colony optimization (ACO), whale optimization algorithm (WOA), and modified
Dijkstra-based methods, provide centralized or semi-distributed optimization for cluster head (CH)
selection and energy-dependent path discovery [9],[10]. Clustering-based protocols, including Low-
Energy Adaptive Clustering Hierarchy (LEACH) and its variants, reduce long-range transmissions by
forming local clusters where specific CH channels handle data aggregation and forwarding. These
protocols have been improved by incorporating fuzzy logic, artificial neural networks (ANNSs), and
quantum-inspired methods [11],[12]. Duty-cycle and sleep-scheduling techniques aim to reduce idle
listening and extend network lifetime by selectively turning off nodes' radios during inactivity. When
implemented effectively, these techniques can reduce overall power consumption by over 50% without
degrading data reliability [13]. Despite the richness of these approaches, most existing protocols have
been evaluated only in simulation environments and lack real-world validation. Furthermore, major
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limitations remain unresolved, including power imbalances near draining nodes, poor scalability under
heterogeneous conditions, and the absence of interlayer integration strategies [14],[15]. This review paper
aims to present a structured, comprehensive, and comparative synthesis of the latest energy-aware
strategies in WSNs, categorized into four critical domains: 1 -Q-Learning-based routing algorithms. 2-
Traditional optimization methods (e.g., ACO, WOA). 3- Clustering-based communication protocols. 4-
Sleep scheduling and duty cycling frameworks. Through detailed analysis and comparative evaluation
tables, the paper highlights key advancements, identifies research gaps, and suggests future directions for
building sustainable, real-world-deployable WSNs capable of adapting to dynamic environmental and
application conditions.

2. Q-Learning-Based Routing Protocols in Wireless Sensor Networks.

Energy efficiency and adaptive decision-making remain critical challenges in WSNs, especially
in dynamic and resource-constrained environments. Reinforcement learning (RL), a branch of machine
learning, has emerged as a promising paradigm to address these challenges by enabling autonomous
agents (sensor nodes) to learn optimal behaviours through environmental interactions and reward
feedback [16]. Among various reinforcement learning techniques, Q-Learning stands out due to its model-
free nature, computational simplicity, and ability to operate without global network knowledge, making it
particularly suitable for distributed and decentralized WSN architectures [8].In the context of routing, Q-
Learning enables sensor nodes to iteratively learn the most energy-efficient routes to a destination
typically a base station by evaluating factors such as remaining energy, hop count, link reliability, and
proximity to the sink. Nodes dynamically adapt to changes in topology, node failures, and fluctuating
power levels by updating their Q values over time in response to feedback from their surroundings. With
little validation in actual sensor hardware, its applications are still mostly limited to simulation-only
research. Furthermore, Q-Learning has problems with convergence because it takes a lot of iterations to
reach stable policies, which lengthens the training period. Another drawback is the state-space
complexity, which causes scalability problems and high memory demands as the number of nodes and
routing states rises exponentially. These drawbacks show that although Q-Learning shows promise for
adaptive routing, more study is required to determine its scalability and practical implementation in large-
scale WSNs [17].

This section provides a thorough review of current Q-Learning-based routing protocols in WSNs, each of
which addresses distinct performance objectives like scalability, load balancing, lifetime extension, and
packet delivery reliability.

Guo et al. (2019) provided Reinforcement Learning-Based Routing (RLBR) , a groundbreaking technique
that defined network lifetime in three dimensions: delivery success, connectivity, and the number of live
nodes. In order to dynamically choose routing paths according to link distance, hop count, and energy
availability, RLBR used Q-values. The protocol was restricted to simulations without physical
deployment, but it performed better than traditional methods like BEER and Q-Routing [18].

Similarly, Wang et al. (2020) proposed Energy-efficient Distributed Adaptive Cooperative Routing
(EDACR) , which integrates lightweight Q-Learning for relay node selection in Wireless Multimedia
Sensor Networks (WMSNs) under quality of service (QoS) constraints. This work decreased computation
and communication overhead while balancing load by restricting routing table updates to high-energy
nodes. In terms of reliability and energy efficiency, evaluation in Network Simulator 2 (NS-2) showed
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better performance than Distributed Adaptive Cooperative Routing (DACR) and Trust-based Cooperative
Routing (TCR) [19].

Mutombo et al. (2021) made another noteworthy contribution by introducing Energy-Efficient
Reinforcement Learning (EER-RL), a protocol for loT-based WSNs that used a three-phase RL approach
(clustering, formation, and transmission). Nodes functioned as independent agents that modified Q-values
according to hop count and energy. Although there were still issues with practical implementation, the
method showed scalability and notable performance gains over LEACH and Power-Efficient Gathering in
Sensor Information System (PEGASIS) [20].

Reinforcement Learning-Based Energy-Efficient Routing Protocol (RLBEERP), a reinforcement learning
model that combined Q-Learning, sleep scheduling, and event-triggered communication to prevent
pointless transmissions, was introduced by Abadi et al. (2022) to further this trend. In contrast to
Reinforcement Learning-Based Routing (RLBR) and Data-Aware Dynamic Forwarding (DADF), the
protocol achieved a longer network lifetime and throughput by rewarding nodes based on transmission
changes, residual energy, and proximity to the sink. However, in order to manage real-time learning,
strong sink nodes were needed [5].

A cluster-based RL routing strategy that incorporates periodic re-election of cluster heads based on
residual energy was proposed by Jayabalan and Pugazendi (2023) for Wireless Body Sensor Networks
(WBSNs). Healthcare settings with limited energy resources can benefit from the hierarchical
architecture's enhanced packet delivery, decreased jitter, and optimized delay [21].

Wang et al. (2023) suggested CRP-Optimizer, a more general and adaptive framework. In contrast to
conventional RL routing models, this protocol used Probabilistic Advantage Multi-Dimensional Policies
(PAMDPs) and Hybrid Proximal Policy Optimization (H-PPO) to make meta-decisions about which
cluster heads to exclude from multi-hop transmission and whether to re-cluster. Although improvements
in delivery success and lifetime were confirmed by simulation results across several protocols (e.g.,
LEACH, Hybrid Energy-Efficient Distributed Clustering (HEED)), deployment in physical WSNs was
not pursued [22].

Lastly, Chaudhari et al. (2025) developed a Q-Learning model that dynamically updates routing
decisions based on real-time residual energy. The protocol preferred nodes with energy > 0.1 J, ensuring
reliable transmission. Although simulations in MATLAB showed improved PDR and reduced packet loss,
the model suffered from energy concentration around the sink, leading to potential routing failure over
time [23].

While these studies demonstrate the potential of Q-Learning in extending network lifetime and improving
adaptive routing, most of them are limited to MATLAB or NS-2 simulations. Critical challenges persist in
achieving real-time convergence, addressing state-space complexity, and handling real-world uncertainties
such as mobility, link variability, and hardware constraints [14][15]. A detailed comparison of these
studies is provided in Tablel, highlighting each protocol’s core features, environment, performance, and
limitations.

Tablel: A Comparative Analysis of Q-Learning-Based Routing Protocols for Energy-Efficient
Wireless Sensor Networks.
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3. Routing Using Traditional Optimization Algorithms in WSNs

Before the integration of learning-based approaches in WSNSs, traditional optimization
algorithms particularly metaheuristic and bio-inspired methods played a central role in addressing routing,
clustering, and energy-efficiency challenges. These algorithms, known for their ability to explore large
solution spaces without requiring exhaustive computation, were especially useful in decentralized,
resource-constrained, and dynamically changing sensor environments [24],[25].Among the most
commonly applied techniques are Ant Colony Optimization (ACO), inspired by the pheromone trail-
following behaviour of ants [24]; Whale Optimization Algorithm (WOA), which simulates the bubble-net
hunting strategy of humpback whales [10]; and modifications of Dijkstra’s shortest-path algorithm,
adapted to incorporate energy-awareness and multi-hop constraints in WSN topologies [26]. These
algorithms typically rely on fitness functions that consider metrics such as residual energy, transmission
distance, node density, and link quality, enabling them to find near-optimal routing paths and cluster head
(CH) assignments under uncertain or incomplete network knowledge. In the context of WSN routing,
these optimization techniques serve as search mechanisms that adaptively balance energy consumption,
extend network lifetime, and improve packet delivery rates, often through simulation-driven evaluations.
They are useful baselines for protocol development because of their adaptability and simplicity,
particularly in deployments that are homogeneous, static, or have limited mobility [27-30].

A thorough analysis of current routing protocols in WSNs that make use of these conventional
optimization techniques is given in this section. In order to improve performance in terms of lifetime,
throughput, load balancing, and resilience to node failure, each of the following contributions adds special
improvements to the base algorithms.

The WOA-Clustering (WOA-C) model created by Jadhav and Shankar (2017) is among the pioneering
contributions in this field. Using a fitness function that combined residual and neighbouring node energy,
this protocol centrally selected the best CHs using the Whale Optimization Algorithm. WOA-C
outperformed LEACH, LEACH-C, and PSO-C, according to simulation results, especially terms of
lowering total energy consumption and extending network lifetime [31]. However, real-world
heterogeneity and mobility were not taken into consideration during the protocol's validation, which was
limited to static, homogeneous networks.

Sharada et al. (2024) proposed Adaptive Ant Colony Distributed Intelligent Clustering (AACDIC) ,
protocol for Cognitive Radio Sensor Networks (CRSNs), to overcome the adaptability constraints in
traditional clustering. This algorithm improved convergence time and power efficiency by dynamically
adjusting CH election based on signal-to-noise ratio (SNR) by combining distributed decision-making and
ant colony optimization. Simulation outcomes indicated a detection probability of 93.7% at 0 dB SNR and
energy reductions up to 24.2% for secondary users, but again, real-world deployment was absent [32].

A significant enhancement in routing cost modelling was introduced by Mohammed et al. (2024) through
a Modified Dijkstra Algorithm. By integrating residual energy and communication cost into the path cost
function, the algorithm avoided premature node depletion. When compared to ACO, the proposed model
achieved substantial gains: a 605-round network lifetime versus 81 rounds for ACO, with a marginally
improved packet delivery ratio (99.9% vs. 98.7%). Nevertheless, the approach remains better suited for
static topologies due to its deterministic structure [33].
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Further advancements were seen in a Modified Ant Colony Optimization Algorithm (MACOA),
introduced by Tawfeek et al. (2025). This model incorporated multi-objective fitness, adaptive
pheromone decay, and self-healing routing mechanisms to address node failure and energy imbalance.
Evaluated in NS-3, MACOA outperformed protocols such as the Enhanced Genetic Algorithm (EGA),
Deep Reinforcement Learning (DRL), and the Energy-aware Reliable Adaptive Routing Protocol (E-
RARP) in terms of throughput, lifetime, and load balancing. However, future work is needed to
implement the algorithm in real-world sensor networks and incorporate fuzzy logic for improved
flexibility [34].

Despite the proven advantages of these algorithms particularly in load distribution, route stability, and
low-complexity deployment, they tend to underperform in highly dynamic, heterogeneous, or real-time
WSN applications compared to adaptive learning-based models. Their reliance on static configurations or
global optimization phases limits responsiveness to rapid topology or energy shifts [35]. A full
comparison of these studies is presented in Table 2, highlighting the protocols’ methods, simulation
platforms, strengths, and key limitations.

Table2: Benchmarking Traditional Optimization Algorithms for Cluster Head Selection and
Routing in Wireless Sensor Networks.

Study Protocol Main Research Simulation Compared | Key Lo
(Author, . A . Limitations
Year) Name Technique Objective Environment | Protocols Improvements
Select
energy- Improved Only tested
. WOA-C efficient energy on
Ashwin R. (Whale Whale cluster heads LEACH, efficienc homogeneous,
Jadhav & T. Optimization Optimization | by evaluating | MATLAB LEACH- rolon e)(;, static
Shankar, ptim Algorithm residual and (Simulated) C, PSO-C, P g networks; no
Algorithm - . network
2017 - (WOA) neighborhood DT o . heterogeneous
Clustering) - lifetime, higher
energy using or real-world
. throughput .
centralized evaluation
WOA
. Reduced
Ee{:(?triglr? CH energy (9.6%
AACDIC O PUs, 24.2% . .
(Adaptive Ant Colony | minimize SUs) Simulation
Sharada K. P Optimization | power, and DGSC, ; ' only; no
Ant Colony . NS-2, improved 2
A.etal, - (ACO) + improve DCFGC, validation in
Distributed Lo MATLAB convergence
2024 - Distributed spectrum DCIFGC real
Intelligent i . (by 47s), and .
Clustering) Intelligence | access in high detection environments
CRSNSs based
on SNR rate
(PD=0.937)
il xended | g
Modified lifetime (605 - )
Mohammed, . - energy and environments;
Modified Dijkstra vs 81 rounds),
Hasan, & - energy cost not robust for
H Dijkstra (Energy- ST , Python ACO lower death .
amza, . in Dijkstra’s : dynamic or
Algorithm Aware Path . rate, slightly -
2024 cost function . . multi-
Cost) f S higher delivery L
or routing in rate (99.9%) objective
WSNs ' cases
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Improve
reliability,
Multi- load- No real-world
MACOA s balancing, EGA, A testing; future
e objective Better lifetime,
(Modified . and energy IABC, work suggests
Tawfeek et ACO with . throughput, ’
Ant Colony . efficiency NS-3 DRL, : fuzzy-logic
al., 2025 T Self-healing residual energy | . .
Optimization & Adantive through PSO, E- and stabilit integration
Algorithm) Pt adaptive RARP y and
Exploration
pheromones deployment
and fault-
tolerance

4. Clustering-Based Routing Protocols in Wireless Sensor Networks.

Clustering-based routing has emerged as a cornerstone strategy in WSNs to mitigate energy
constraints and enhance network scalability, fault tolerance, and data aggregation efficiency. By grouping
sensor nodes into clusters and designating one node per cluster as the Cluster Head (CH), this hierarchical
structure reduces redundant data transmissions and long-range communications between individual nodes
and the base station (BS), thereby significantly conserving node energy and extending the overall network
lifetime [36],[37]. The foundational Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol,
introduced by Heinzelman et al. [38], pioneered this approach through probabilistic CH rotation to
uniformly distribute energy consumption. Although LEACH provided substantial improvements in
simulated environments, it lacked adaptability to heterogeneous energy distributions and mobility, leading
to performance degradation in practical deployments. These limitations prompted the development of
enhanced clustering frameworks that integrate intelligent decision-making techniques to optimize CH
election and routing strategies. Recent advances have introduced hybrid clustering models that incorporate
artificial intelligence, fuzzy logic, and metaheuristic optimization to refine CH selection, inter-cluster
routing, and load balancing. Techniques such as K-Means, Kohonen Self-Organizing Maps (KSOM),
Mamdani Fuzzy Inference Systems, Quantum Annealing, Particle Swarm Optimization, and Multi-
Strategy Snake Optimization have been employed to adaptively adjust clustering structures in response to
dynamic network conditions [11],[30],[34],[39]. Moreover, some protocols have extended clustering logic
to support mobility awareness, sector-based thresholding, and reinforcement learning, enabling CHs to be
selected not only based on residual energy, but also considering contextual factors like proximity to sink,
communication overhead, and neighbourhood density. This diversification of clustering methodologies
demonstrates the potential of hybrid intelligent systems to enhance WSN energy efficiency under real-
world constraints [40],[41].

This section provides a comprehensive review of recent clustering-based routing protocols in WSNSs,
focusing on energy-aware techniques that improve CH election and inter-cluster routing. Each protocol is
evaluated based on its methodological framework, simulation platform, performance gains, and
limitations.

Heinzelman et al. (2000) first proposed the original LEACH protocol, which used randomized cluster-
head rotation to divide the energy load among all nodes. Premature node death occurred close to the base
station as a result of LEACH's setup overhead and lack of mechanisms to handle dynamic energy
variation, despite its effectiveness in simulation [42].
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Razzaq et al. (2018) developed the Optimal Packet Size with K-Means Clustering (OPSKC) protocol to
overcome the static nature of LEACH. It combined an analytically determined optimal packet size that
was adapted to the channel conditions with centralized K-Means clustering. Additionally, this method
made a distinction between intra-cluster and inter-cluster communication energy consumption. Mobility
and retransmission factors were not taken into account, but MATLAB simulation results showed
reductions in overall energy usage and delayed node death when compared to K-Means Energy-Aware
Clustering (KEAC) [43].

Bataineh et al. (2019) created a hybrid solution that combined Kohonen Self-Organizing Maps (KSOM)
with K-Means clustering, which was improved by a neural conscience function. Although their model
outperformed KSOM alone in real-world WSN scenarios, it increased network lifetime by 11.11% and
reduced energy consumption by 3.33% [44].

To further enhance energy efficiency and scalability, Hu et al. (2024) introduced the Cluster Head Harris
Hawk Fuzzy Optimization (CHHFO) protocol, leveraging a Mamdani fuzzy system and Harris Hawk
Optimization (HHO). This dual-phase strategy identified CHs based on energy, proximity, and
neighbourhood density, while HHO optimized relay node selection. The protocol reduced energy
consumption by up to 39.79% and improved throughput, but lacked evaluation under dynamic topologies
[45].

Another hybrid framework, Fuzzy-Quantum Annealing (FQA), was developed by Wang et al. (2024). It
integrates Fuzzy Logic for CH election and Quantum Annealing for optimal multi-hop routing. Simulation
across four scenarios revealed enhanced lifetime, throughput, and number of alive nodes, yet the protocol
was limited to static WSN environments without mobile sink testing [46].

Yang et al. (2024) proposed a novel combination of the Multi-Strategy Snake Optimizer (MSSO) and
Minimum Spanning Tree (MST) for both CH and relay selection. Their approach optimized intra- and
inter-cluster performance using dynamic mutation strategies and fuzzy C-Means. The results showed
consistent improvements of over 25% in energy savings and throughput compared to five benchmark
protocols, though it remained simulation-based [47].

In their second contribution, Hu et al. (2024) proposed the Quantum Particle Swarm Optimization
(QPSOFL) protocol, and merging it with fuzzy-based relay selection. The algorithm incorporated Sobol
sequence initialization, Lévy flights, and Gaussian perturbation to avoid local optima. This resulted in
superior network longevity and performance metrics, albeit tested only in MATLAB [48].

The KMSC algorithm, proposed by Zeng et al. (2024), introduced a threshold-based K-Means sector
clustering approach, which applies clustering only when node density in a sector that exceeds a predefined
limit. The CHs were selected based on energy and total communication cost. Hybrid routing (single-
hop/multi-hop) enabled the protocol to outperform traditional K-means and Energy-Efficient Clustering
Protocol based on K-means (EECPK-means) schemes across several node death benchmarks [40].

Finally, Wang and Duan (2025) proposed Fuzzy-Logic and Q-Learning based Unequal Clustering and
Routing (FQ-UCR) , combining Fuzzy Logic and Q-Learning for both CH election and inter-cluster
routing. The model incorporated node centrality, residual energy, and neighbour count in fuzzy inference
and dynamically selected the next-hop CH via reinforcement learning. While it outperformed EEUC and
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CHEF in stability and lifetime, the absence of real-world validation and dataset use limits its applicability

[49].

An in-depth comparative summary of these clustering-based protocols is provided in Table 3, capturing
the diversity of hybrid techniques, energy models, and simulation outcomes.

Table3: A Detailed Comparative Review of Clustering-Based Routing Protocols in Energy-

Constrained Wireless Sensor Networks.

Study Protoco | Main Research Simulation Compared | Key S
(Author, | . . : Limitations
Year) Name | Technique | Objective Environment | Protocols | Improvements
Reduce
Randomize | M"Y via 8x less ener Simulation
Heinzelma d Cluster randomized MATLAB Direct use: 3x lon %)r/ only; no real
netal., LEACH cluster-head (First-order Comm., ’ g deployment;
Head : : network
2000 . assignment radio model) MTE o setup overhead
Rotation lifetime :
and local ignored
aggregation
Reduce
transmission
Razzaq e KeMeans + | Lot cse deayed | only: gnorec
g OPSKC | Optimal packet MATLAB KEAC , delay y: 19
al., 2018 . optimization FND, higher mobility,
Packet Size .
and energy- throughput retransmissions
aware CH
selection
Enhance
rybrid k- | e
Bataineh et KSOM Means + network 11.11% better Simulation
+ K- Self- . MATLAB KSOM lifetime, 3.33% | only; no real
al., 2019 . conscience : A
Means Organizing - energy savings | validation
function and
Maps .
residual
energy
Fuzzy Optimal CH Up to 39.79%
Logic + and relay EFCR, energy No dynamic
Hu et al., CHHEO Harris selection MATLAB HHO- reduction; testing or
2024 Hawk based on R2022a UCRA, better hardware
Optimizatio | fuzzy fitness IHHO-F scalability & validation
n functions throughput
CH selection FRNSEER
using fuzzy , FC- Superior L )
wang L, | s At e, | SOl o
g FQA 9 optimal multi- | MATLAB BOA- throughput, and
al., 2024 Quantum . . or real-world
Annealing hop via ACO, alive nodes trials
Hamiltonian OAFS- count
search IMFO
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5. Sleep Scheduling and Duty Cycling Techniques in WSNSs.

Energy conservation remains a critical design objective in WSNs, especially for nodes operating
in idle listening mode, which can account for a significant portion of total energy consumption even in the
absence of active data transmission or reception. While advances in routing and clustering protocols have
mitigated energy waste during communication, idle listening continues to drain energy unnecessarily
particularly in dense or large-scale networks with intermittent sensing demands [36],[37]. To address this
inefficiency, sleep scheduling and duty cycling techniques have emerged as essential strategies that
dynamically transition sensor nodes between active and low-power states. These mechanisms aim to
reduce idle energy consumption without compromising the quality of service (QoS), especially in long-
term deployments, time-critical applications, and energy-constrained environments [50],[51]. Sleep
scheduling algorithms can be broadly classified into deterministic, adaptive, and intelligent schemes.
Among the most promising are learning-based and optimization-driven frameworks that autonomously
determine optimal wake or sleep intervals based on real-time network conditions, traffic patterns, residual
energy, and data redundancy. To increase decision-making precision and responsiveness in the face of
uncertainty, these frameworks are increasingly integrating neural networks, fuzzy systems, reinforcement
learning, and evolutionary algorithms [13],[8].

This section provides a thorough analysis of current sleep scheduling and duty cycling strategies in
WSNs, focusing on learning-driven and hybrid models that show reduced performance degradation,
increased network lifetime, and enhanced energy efficiency. Each protocol is examined according to its
methodology, scalability, real-world applicability, and simulation results.

Huang et al. (2021) suggested a Q-learning-based MAC layer scheduler enhanced with linear regression
function approximation as one of the more recent contributions. Their approach used the idle listening
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ratio as the action, and defined the system state as the normalized queue load. A reward function
incorporating both energy consumption and latency was used to learn optimal duty cycles. The approach
outperformed Sensor-Medium Access Control (S-MAC) and Fully Active (FA) protocols in NS-3
simulations under varying traffic loads but lacked theoretical modelling and real-world validation [13].

Wang et al. (2023) introduced Reinforcement Learning-based Sleep Scheduling Algorithm for
Compressive Data Gathering (RLSSA-CDG), a model-free Q-Learning algorithm designed to enhance
compressive data gathering (CDG) through energy-aware sleep scheduling. Each node participated in a
distributed learning process using a shared Q-table to decide when to activate or sleep. Simulation results
demonstrated substantial energy savings (42.42%) and extended network lifetime by over 57%, with an
84.7% improvement in data recovery accuracy. However, the forwarding phase relied on traditional
routing, and the solution was validated only in simulated environments [52].

A more complex and integrated solution was offered by Nithyanandh et al. (2023) through their Energy-
Aware Protocol with Improved Fitness-Based Algorithm (EAP-IFBA) protocol, which combines Firefly
Algorithm, Elliptic Curve Cryptography (ECC), and Recurrent Neural Networks (RNNSs). This protocol
aims to jointly optimize adaptive sleep scheduling, secure data transmission, and anomaly detection in
large-scale IoT networks. Evaluated on OMNET++ with up to 2500 nodes, the method achieved 98%
sleep efficiency, a network lifetime of 98%, and strong resilience (96.5%) to security threats. However, its
performance degraded under uneven deployments and in heterogeneous environments [53].

Jeyakarthic and Selvakumar (2024) focused on a smart CH selection and sleep scheduling model with
real-time duty cycle optimization and data aggregation. Their gradient-based adaptive scheduler
minimized redundant transmissions and conserved energy by adjusting node states dynamically. The
system achieved a packet delivery ratio (PDR) of 98.24% and an energy consumption rate of only 85 mJ
per packet, surpassing threshold-based and dynamic scheduling approaches. Still, validation was limited
to MATLAB simulations without real 10T traces [54].

A learning-driven approach was also employed by Chaya and Shylaja (2024), who proposed an
Artificial Neural Network (ANN)-based model for predictive sleep-wake scheduling. Their method
integrated dynamic programming for routing optimization and used ANN to model energy trends and
decide on sleep states in real-time. Despite achieving improved energy efficiency and network longevity,
the protocol introduced high computational complexity and potential latency due to ANN training and
frequent state transitions [55].

Lastly, EI-Shenhabi et al. (2025) developed RLDCSSA-CDG, a comprehensive Q-learning-based
framework that combines cluster formation, UCB-driven CH selection, and sleep scheduling for
compressive data gathering. The system reduces redundant transmissions using compressive sensing (CS)
and adjusts node activity adaptively to maximize lifetime and accuracy. Simulations showed 63.3% fewer
transmissions and 91.1% data recovery accuracy compared to existing models, yet the approach was still
untested on physical hardware [56].A comparative evaluation of these protocols is provided in Table 4,
summarizing key techniques, objectives, performance outcomes, and limitations.
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Table4: Comparative Evaluation of Sleep Scheduling and Duty Cycling Techniques for Prolonging
Wireless Sensor Network Lifetime.
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6. Discussion and Future Research Directions

The reviewed literature across four key domains Q-Learning-based routing, traditional
optimization algorithms, clustering-based protocols, and sleep scheduling, highlights a rich diversity of
strategies aimed at reducing energy consumption and improving data delivery in WSNs. Each category
contributes distinct strengths and faces inherent limitations, suggesting that no single strategy offers a
universal solution for all WSN scenarios.

From the Q-Learning-based routing protocols, it is evident that model-free reinforcement learning enables
nodes to dynamically adapt routing decisions to environmental changes and residual energy levels.
However, nearly all proposed models including RLBR, EDACR, RLBEEP, and CRP-Optimizer remain
limited to simulation environments, with no large-scale real-world deployments. Furthermore, congestion
near sink nodes, state-space complexity, and convergence speed remain open challenges for Q-Learning-
based systems. Even though Q-Learning has proven to be highly adaptive and capable of making wise
decisions in WSN routing, its real-world uses are still mostly limited to simulation-based research.
Additionally, the algorithm suffers from state-space complexity that restricts scalability and convergence
delays that necessitate multiple iterations to stabilize. These drawbacks imply that more investigation is
necessary to resolve Q-Learning's scalability issues and validate it in actual sensor deployments.

Traditional optimization methods like WOA, ACO, and modified Dijkstra continue to serve as baseline
references, especially in static or homogeneous environments. These models are often more interpretable
and computationally efficient, but their slow adaptation to dynamic events and dependence on global
knowledge hinder their scalability. Moreover, most of them such as MACOA and AACDIC focus
predominantly on CH selection, with limited attention to inter-cluster or multi-hop optimization, which is
increasingly crucial in large-scale deployments.

In clustering-based routing, recent studies have shown strong performance improvements when hybrid
techniques are used—especially when combining fuzzy logic, swarm intelligence, or quantum-inspired
methods. Protocols such as FQA, CHHFO, and MSSO+MST demonstrate measurable gains in lifetime
and load distribution. Nonetheless, many of these models assume static network topologies and
homogeneous energy distributions, which are rarely applicable in practical WSNs. There is a growing
need for mobile-sink-aware and heterogeneous node clustering mechanisms.
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Sleep scheduling and duty cycling approaches remain underutilized in many energy-aware WSN models.
Although protocols like RLSSA-CDG and EAP-IFBA achieve impressive results reducing idle listening
and prolonging network lifetime many routing models, they do not integrate sleep management, leading to
avoidable energy wastage. A key observation is that joint optimization of routing, clustering, and sleep
scheduling through reinforcement learning or hybrid models offers the greatest potential for achieving
sustainability, yet remains underexplored.

7. Identified Research Gaps and Future Opportunities:

1. Real-World Validation: Most reviewed protocols rely solely on simulation (MATLAB, NS-2/3).
Future research should prioritize hardware implementation or deployment on WSN testbeds (e.g.,
I0T-LAB, FIT loT).

2. Heterogeneous and Mobile Environments: Many models assume homogeneous node energy and
static topologies. Future designs must address node mobility, energy harvesting capabilities, and
non-uniform energy distributions.

3. Cross-Layer Design Integration: The decoupling of routing, clustering, and duty cycling in most
works limits holistic optimization. Integrated frameworks that jointly optimize these layers,
possibly using deep reinforcement learning (DRL), represent a promising avenue.

4. Lightweight and Distributed Learning: Given the constraints of sensor nodes, there's a critical need
for low-overhead RL models that do not depend on centralized learning or require large memory.

5. Security-Aware Energy Optimization: Protocols like EAP-IFBA demonstrate the feasibility of
combining encryption, anomaly detection, and energy scheduling. Future work could explore
multi-objective optimization models that balance energy, delay, and security.

6. Dataset Availability and Benchmarking Standards: A key limitation in current research is the lack
of standardized datasets and performance benchmarks. Building open-source simulation
environments with realistic WSN traces would improve reproducibility and comparison.

8. Conclusion

This review has systematically analyzed and compared recent advances in energy-efficient
routing techniques for WSNSs, focusing on four major categories: Q-Learning-based routing, traditional
optimization algorithms, clustering-based protocols, and sleep scheduling and duty cycling strategies.
Each of these domains offers unique approaches to addressing the energy constraints inherent in WSNs,
and their comparative evaluation reveals critical insights into the current state of research and future
innovation paths. Reinforcement learning, particularly Q-Learning, enables nodes to learn optimal
forwarding decisions dynamically, enhancing adaptability and network lifetime. While conventional
algorithms such as WOA and ACO provide basic robustness and simplicity, they are not flexible in real-
time or mobile environments. Clustering-based approaches remain effective in reducing transmission
overhead, especially when enhanced through fuzzy logic, neural networks, or evolutionary computation.
Meanwhile, duty cycling and sleep scheduling continue to play a fundamental role in minimizing idle
energy waste, yet remain under-integrated in many current routing protocols. Despite the significant
progress, a recurring limitation across most protocols is their exclusive reliance on simulation
environments. Furthermore, few models address the complexities of heterogeneous networks, mobile
sinks, or integrated cross-layer optimization. The future of WSN design lies in holistic and intelligent
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systems that combine adaptive routing, cluster management, and power scheduling into unified,
lightweight frameworks capable of learning and evolving over time. By identifying key strengths,
limitations, and research gaps in the existing literature, this review provides a foundation for the
development of next-generation, energy-aware WSN protocols. These protocols should be capable of
sustaining long-term operations in real-world environments while adapting to dynamic network
conditions, security threats, and evolving data demands.
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