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Abstract. Wireless Sensor Networks (WSNs) are widely used in various applications, yet they 

remain limited by the energy constraints of sensor nodes. This review paper explores and compares recent 

advancements in energy-efficient routing strategies across four major categories: Q-Learning-based 

routing, traditional optimization algorithms, clustering-based protocols, and sleep scheduling techniques. 

Each approach is analyzed in terms of its methodology, simulation environment, performance metrics, and 

limitations. Q-Learning techniques provide adaptive and intelligent routing decisions but often lack real-

world deployment. Traditional algorithms such as Ant Colony Optimization (ACO) and Whale 

Optimization Algorithm (WOA) offer reliable clustering but adapt poorly to dynamic environments. 

Clustering-based protocols, especially those integrating fuzzy logic or quantum methods, show strong 

results in simulations but assume static and homogeneous nodes. Sleep scheduling and duty cycling 

protocols significantly reduce idle energy waste, yet are rarely integrated with routing layers. The review 

identifies that most current protocols are evaluated only through simulations and face challenges such as 

congestion near sinks, lack of cross-layer integration, and scalability under heterogeneous conditions. 

Future research should focus on building lightweight, real-time learning frameworks that jointly optimize 

routing, clustering, and sleep scheduling in practical deployments. 

 
 

Keywords: Wireless Sensor Networks; Energy Efficiency; Q-Learning; Sleep Scheduling; Duty 

Cycling; Network Lifetime. 
 

 

 

1. Introduction 
              Wireless Sensor Networks (WSNs) represent a cornerstone in the architecture of intelligent 

systems, enabling real-time environmental perception, data acquisition, and decision-making across 

diverse application domains such as environmental monitoring, industrial automation, smart cities, 

precision agriculture, and healthcare systems [1],[2]. A typical WSN consists of numerous spatially 

distributed, low-power sensor nodes that autonomously sense, process, and transmit information to a 

centralized base station or sink node. These nodes are often deployed in inaccessible or harsh 

environments and are typically powered by limited-capacity, non-rechargeable batteries, making energy 

efficiency a critical design constraint [3],[4]. As shown in Figure 1[5], a standard WSN topology includes 

mailto:nour.Saleh.ms3@student.atu.edu.iq
mailto:ad466kent@atu.edu.iq
mailto:nour.Saleh.ms3@student.atu.edu.iq
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multiple sensor nodes (SNs) communicate wirelessly with neighbouring nodes and forward data either 

directly or via multi-hop routing to the base station (BS). These nodes continuously perform sensing, data 

aggregation, and communication tasks, each of which contributes to energy consumption at different rates. 

Notably, wireless communication remains the dominant energy consumer, especially during idle listening, 

redundant data forwarding, and suboptimal routing decisions [6],[7]. 

 
 

FIGURE 1. Wireless sensor network's general structure [5]. 

 

                To address the energy shortage problem, recent research has explored multiple complementary 

strategies at different layers of the network protocol stack. Among the most promising developments are 

reinforcement learning (RL)-based routing protocols, particularly those using Q-Learning, which enable 

sensor nodes to dynamically learn optimal routing paths by interacting with the environment and receiving 

feedback based on remaining energy, distance, and transmission success [8]. Traditional optimization 

algorithms, such as ant colony optimization (ACO), whale optimization algorithm (WOA), and modified 

Dijkstra-based methods, provide centralized or semi-distributed optimization for cluster head (CH) 

selection and energy-dependent path discovery [9],[10]. Clustering-based protocols, including Low-

Energy Adaptive Clustering Hierarchy (LEACH) and its variants, reduce long-range transmissions by 

forming local clusters where specific CH channels handle data aggregation and forwarding. These 

protocols have been improved by incorporating fuzzy logic, artificial neural networks (ANNs), and 

quantum-inspired methods [11],[12]. Duty-cycle and sleep-scheduling techniques aim to reduce idle 

listening and extend network lifetime by selectively turning off nodes' radios during inactivity. When 

implemented effectively, these techniques can reduce overall power consumption by over 50% without 

degrading data reliability [13]. Despite the richness of these approaches, most existing protocols have 

been evaluated only in simulation environments and lack real-world validation. Furthermore, major 
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limitations remain unresolved, including power imbalances near draining nodes, poor scalability under 

heterogeneous conditions, and the absence of interlayer integration strategies [14],[15]. This review paper 

aims to present a structured, comprehensive, and comparative synthesis of the latest energy-aware 

strategies in WSNs, categorized into four critical domains: 1 -Q-Learning-based routing algorithms. 2- 

Traditional optimization methods (e.g., ACO, WOA). 3- Clustering-based communication protocols. 4- 

Sleep scheduling and duty cycling frameworks. Through detailed analysis and comparative evaluation 

tables, the paper highlights key advancements, identifies research gaps, and suggests future directions for 

building sustainable, real-world-deployable WSNs capable of adapting to dynamic environmental and 

application conditions. 

 

2. Q-Learning-Based Routing Protocols in Wireless Sensor Networks. 
               Energy efficiency and adaptive decision-making remain critical challenges in WSNs, especially 

in dynamic and resource-constrained environments. Reinforcement learning (RL), a branch of machine 

learning, has emerged as a promising paradigm to address these challenges by enabling autonomous 

agents (sensor nodes) to learn optimal behaviours through environmental interactions and reward 

feedback [16]. Among various reinforcement learning techniques, Q-Learning stands out due to its model-

free nature, computational simplicity, and ability to operate without global network knowledge, making it 

particularly suitable for distributed and decentralized WSN architectures [8].In the context of routing, Q-

Learning enables sensor nodes to iteratively learn the most energy-efficient routes to a destination 

typically a base station by evaluating factors such as remaining energy, hop count, link reliability, and 

proximity to the sink. Nodes dynamically adapt to changes in topology, node failures, and fluctuating 

power levels by updating their Q values over time in response to feedback from their surroundings. With 

little validation in actual sensor hardware, its applications are still mostly limited to simulation-only 

research.  Furthermore, Q-Learning has problems with convergence because it takes a lot of iterations to 

reach stable policies, which lengthens the training period.  Another drawback is the state-space 

complexity, which causes scalability problems and high memory demands as the number of nodes and 

routing states rises exponentially.  These drawbacks show that although Q-Learning shows promise for 

adaptive routing, more study is required to determine its scalability and practical implementation in large-

scale WSNs [17]. 

 

This section provides a thorough review of current Q-Learning-based routing protocols in WSNs, each of 

which addresses distinct performance objectives like scalability, load balancing, lifetime extension, and 

packet delivery reliability. 

 

Guo et al. (2019) provided Reinforcement Learning-Based Routing (RLBR) , a groundbreaking technique 

that defined network lifetime in three dimensions: delivery success, connectivity, and the number of live 

nodes. In order to dynamically choose routing paths according to link distance, hop count, and energy 

availability, RLBR used Q-values. The protocol was restricted to simulations without physical 

deployment, but it performed better than traditional methods like BEER and Q-Routing [18].  

 

Similarly, Wang et al. (2020) proposed Energy-efficient Distributed Adaptive Cooperative Routing 

(EDACR) , which integrates lightweight Q-Learning for relay node selection in Wireless Multimedia 

Sensor Networks (WMSNs) under quality of service (QoS) constraints. This work decreased computation 

and communication overhead while balancing load by restricting routing table updates to high-energy 

nodes. In terms of reliability and energy efficiency, evaluation in Network Simulator 2 (NS-2) showed 
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better performance than Distributed Adaptive Cooperative Routing (DACR) and Trust-based Cooperative 

Routing (TCR) [19]. 

 

Mutombo et al. (2021) made another noteworthy contribution by introducing Energy-Efficient 

Reinforcement Learning (EER-RL), a protocol for IoT-based WSNs that used a three-phase RL approach 

(clustering, formation, and transmission). Nodes functioned as independent agents that modified Q-values 

according to hop count and energy. Although there were still issues with practical implementation, the 

method showed scalability and notable performance gains over LEACH and Power-Efficient Gathering in 

Sensor Information System (PEGASIS) [20]. 

 

Reinforcement Learning-Based Energy-Efficient Routing Protocol (RLBEERP), a reinforcement learning 

model that combined Q-Learning, sleep scheduling, and event-triggered communication to prevent 

pointless transmissions, was introduced by Abadi et al. (2022) to further this trend. In contrast to 

Reinforcement Learning-Based Routing (RLBR) and Data-Aware Dynamic Forwarding (DADF), the 

protocol achieved a longer network lifetime and throughput by rewarding nodes based on transmission 

changes, residual energy, and proximity to the sink. However, in order to manage real-time learning, 

strong sink nodes were needed [5]. 

 

A cluster-based RL routing strategy that incorporates periodic re-election of cluster heads based on 

residual energy was proposed by Jayabalan and Pugazendi (2023) for Wireless Body Sensor Networks 

(WBSNs). Healthcare settings with limited energy resources can benefit from the hierarchical 

architecture's enhanced packet delivery, decreased jitter, and optimized delay [21]. 

 

Wang et al. (2023) suggested CRP-Optimizer, a more general and adaptive framework. In contrast to 

conventional RL routing models, this protocol used Probabilistic Advantage Multi-Dimensional Policies 

(PAMDPs)  and Hybrid Proximal Policy Optimization (H-PPO) to make meta-decisions about which 

cluster heads to exclude from multi-hop transmission and whether to re-cluster. Although improvements 

in delivery success and lifetime were confirmed by simulation results across several protocols (e.g., 

LEACH, Hybrid Energy-Efficient Distributed Clustering (HEED)), deployment in physical WSNs was 

not pursued [22]. 

Lastly, Chaudhari et al. (2025) developed a Q-Learning model that dynamically updates routing 

decisions based on real-time residual energy. The protocol preferred nodes with energy > 0.1 J, ensuring 

reliable transmission. Although simulations in MATLAB showed improved PDR and reduced packet loss, 

the model suffered from energy concentration around the sink, leading to potential routing failure over 

time [23]. 

While these studies demonstrate the potential of Q-Learning in extending network lifetime and improving 

adaptive routing, most of them are limited to MATLAB or NS-2 simulations. Critical challenges persist in 

achieving real-time convergence, addressing state-space complexity, and handling real-world uncertainties 

such as mobility, link variability, and hardware constraints [14][15]. A detailed comparison of these 

studies is provided in Table1, highlighting each protocol’s core features, environment, performance, and 

limitations. 

Table1: A Comparative Analysis of Q-Learning-Based Routing Protocols for Energy-Efficient 

Wireless Sensor Networks. 
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Study 

(Author, 

Year) 

Protocol 

Name 

Main 

Technique 

Research 

Objective 

Simulation 

Environment 

Compared 

Protocols 

Key 

Improvements 
Limitations 

Wenjing 

Guo et al., 

2019 

RLBR 

Reinforcement 

Learning (Q-

Learning) 

Extend network 

lifetime by 

optimizing 

routes using 

residual energy, 

hop count, and 

connectivity 

Simulated 

(unspecified 

tool) 

EAR, 

BEER, Q-

Routing, 

MRL-

SCSO 

Significant 

improvement 

in energy 

efficiency, 

packet 

delivery, and 

network 

longevity 

Evaluated only 

in simulation; 

lacks real-

world 

validation 

Denghui 

Wang et 

al., 2020 

EDACR 
Lightweight 

Q-Learning 

Optimize 

routing in 

WMSNs for 

QoS and energy 

efficiency via 

adaptive relay 

selection 

NS-2 
DACR, 

TCR 

Higher energy 

efficiency and 

extended 

lifetime under 

delay/reliability 

constraints 

Only 

simulated; no 

hardware or 

real 

deployment 

testing 

Mutombo 

et al., 

2021 

EER-RL 

Reinforcement 

Learning (3-

phase: CH 

election, 

formation, 

transmission) 

Improve 

energy-aware 

routing 

scalability and 

efficiency for 

IoT-based 

WSNs 

MATLAB 

LEACH, 

PEGASIS, 

FlatEER-

RL 

Improved 

lifetime, energy 

use, scalability 

Lack of real-

world testing; 

no hardware 

implementation 

Elah 

Abadi et 

al., 2022 

RLBEEP 

Q-Learning + 

Sleep 

Scheduling + 

Event-

triggered 

Transmission 

Enhance 

routing and 

control via 

reinforcement 

learning with 

reduced 

communication 

overhead 

Python + 

wsn-indfeat-

dataset 

RLBR, 

DADF 

Improved 

throughput, 

delayed FND, 

enhanced 

lifetime 

High 

processing 

requirements at 

sink; no 

physical 

testbed 

Jayabalan 

& 

Pugazendi, 

2023 

Cluster-

based RL 

routing 

for 

WBSNs 

Q-Learning 

with 

hierarchical 

WBSN 

architecture 

Energy-efficient 

routing in 

healthcare 

applications 

using cluster 

head re-election 

based on energy 

Simulation 

(tool not 

mentioned) 

Previous 

WBSN 

routing 

models 

Better delay, 

jitter, 

throughput, 

node survival 

rate 

Simulation 

only; lacks 

real-world 

WBSN 

evaluation 

Yan Wang 

et al., 

2023 

CRP-

optimizer 

Hybrid PPO + 

PAMDP-

based RL 

Optimize 

reclustering 

decisions and 

multi-hop relay 

exclusion for 

energy 

balancing 

Simulation 

across 

LEACH, 

HEED, etc. 

LEACH, 

HEED, 

LEACH-

C, 

WCHSA, 

OPSKC 

Increased 

lifetime, higher 

delivery rate, 

improved 

survival 

No physical 

deployment; 

evaluated via 

simulations 

only 

Chaudhari 

et al., 

2025 

Unnamed 

Q-

learning 

model 

Energy-aware 

Q-Learning 

routing 

Energy-efficient 

forwarding with 

dynamic Q-

value update 

based on node 

energy 

MATLAB 

2022 

Basic Q-

Learning 

Better PDR, 

reduced PLR, 

higher 

throughput, 

extended 

lifetime 

Nodes near 

sink drain 

faster; lacks 

real test 

validation 
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3. Routing Using Traditional Optimization Algorithms in WSNs 
               Before the integration of learning-based approaches in WSNs, traditional optimization 

algorithms particularly metaheuristic and bio-inspired methods played a central role in addressing routing, 

clustering, and energy-efficiency challenges. These algorithms, known for their ability to explore large 

solution spaces without requiring exhaustive computation, were especially useful in decentralized, 

resource-constrained, and dynamically changing sensor environments [24],[25].Among the most 

commonly applied techniques are Ant Colony Optimization (ACO), inspired by the pheromone trail-

following behaviour of ants [24]; Whale Optimization Algorithm (WOA), which simulates the bubble-net 

hunting strategy of humpback whales [10]; and modifications of Dijkstra’s shortest-path algorithm, 

adapted to incorporate energy-awareness and multi-hop constraints in WSN topologies [26]. These 

algorithms typically rely on fitness functions that consider metrics such as residual energy, transmission 

distance, node density, and link quality, enabling them to find near-optimal routing paths and cluster head 

(CH) assignments under uncertain or incomplete network knowledge. In the context of WSN routing, 

these optimization techniques serve as search mechanisms that adaptively balance energy consumption, 

extend network lifetime, and improve packet delivery rates, often through simulation-driven evaluations. 

They are useful baselines for protocol development because of their adaptability and simplicity, 

particularly in deployments that are homogeneous, static, or have limited mobility [27-30].  

                                                                                                       

A thorough analysis of current routing protocols in WSNs that make use of these conventional 

optimization techniques is given in this section. In order to improve performance in terms of lifetime, 

throughput, load balancing, and resilience to node failure, each of the following contributions adds special 

improvements to the base algorithms. 

 

The WOA-Clustering (WOA-C) model created by Jadhav and Shankar (2017) is among the pioneering 

contributions in this field. Using a fitness function that combined residual and neighbouring node energy, 

this protocol centrally selected the best CHs using the Whale Optimization Algorithm. WOA-C 

outperformed LEACH, LEACH-C, and PSO-C, according to simulation results, especially terms of 

lowering total energy consumption and extending network lifetime [31]. However, real-world 

heterogeneity and mobility were not taken into consideration during the protocol's validation, which was 

limited to static, homogeneous networks. 

 

Sharada et al. (2024) proposed Adaptive Ant Colony Distributed Intelligent Clustering (AACDIC) , 

protocol for Cognitive Radio Sensor Networks (CRSNs), to overcome the adaptability constraints in 

traditional clustering. This algorithm improved convergence time and power efficiency by dynamically 

adjusting CH election based on signal-to-noise ratio (SNR) by combining distributed decision-making and 

ant colony optimization. Simulation outcomes indicated a detection probability of 93.7% at 0 dB SNR and 

energy reductions up to 24.2% for secondary users, but again, real-world deployment was absent [32]. 

 

A significant enhancement in routing cost modelling was introduced by Mohammed et al. (2024) through 

a Modified Dijkstra Algorithm. By integrating residual energy and communication cost into the path cost 

function, the algorithm avoided premature node depletion. When compared to ACO, the proposed model 

achieved substantial gains: a 605-round network lifetime versus 81 rounds for ACO, with a marginally 

improved packet delivery ratio (99.9% vs. 98.7%). Nevertheless, the approach remains better suited for 

static topologies due to its deterministic structure [33]. 
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Further advancements were seen in a Modified Ant Colony Optimization Algorithm (MACOA), 

introduced by Tawfeek et al. (2025). This model incorporated multi-objective fitness, adaptive 

pheromone decay, and self-healing routing mechanisms to address node failure and energy imbalance. 

Evaluated in NS-3, MACOA outperformed protocols such as the Enhanced Genetic Algorithm (EGA), 

Deep Reinforcement Learning (DRL), and the Energy-aware Reliable Adaptive Routing Protocol (E-

RARP) in terms of throughput, lifetime, and load balancing. However, future work is needed to 

implement the algorithm in real-world sensor networks and incorporate fuzzy logic for improved 

flexibility [34]. 

Despite the proven advantages of these algorithms particularly in load distribution, route stability, and 

low-complexity deployment, they tend to underperform in highly dynamic, heterogeneous, or real-time 

WSN applications compared to adaptive learning-based models. Their reliance on static configurations or 

global optimization phases limits responsiveness to rapid topology or energy shifts [35]. A full 

comparison of these studies is presented in Table 2, highlighting the protocols’ methods, simulation 

platforms, strengths, and key limitations. 

Table2: Benchmarking Traditional Optimization Algorithms for Cluster Head Selection and 

Routing in Wireless Sensor Networks. 

 

Study 

(Author, 

Year) 

Protocol 

Name 

Main 

Technique 

Research 

Objective 

Simulation 

Environment 

Compared 

Protocols 

Key 

Improvements 
Limitations 

Ashwin R. 

Jadhav & T. 

Shankar, 

2017 

WOA-C 

(Whale 

Optimization 

Algorithm - 

Clustering) 

Whale 

Optimization 

Algorithm 

(WOA) 

Select 

energy-

efficient 

cluster heads 

by evaluating 

residual and 

neighborhood 

energy using 

centralized 

WOA 

MATLAB 

(Simulated) 

LEACH, 

LEACH-

C, PSO-C, 

DT 

Improved 

energy 

efficiency, 

prolonged 

network 

lifetime, higher 

throughput 

Only tested 

on 

homogeneous, 

static 

networks; no 

heterogeneous 

or real-world 

evaluation 

Sharada K. 

A. et al., 

2024 

AACDIC 

(Adaptive 

Ant Colony 

Distributed 

Intelligent 

Clustering) 

Ant Colony 

Optimization 

(ACO) + 

Distributed 

Intelligence 

Dynamic CH 

selection, 

minimize 

power, and 

improve 

spectrum 

access in 

CRSNs based 

on SNR 

NS-2, 

MATLAB 

DGSC, 

DCFGC, 

DCJFGC 

Reduced 

energy (9.6% 

PUs, 24.2% 

SUs), 

improved 

convergence 

(by 47s), and 

high detection 

rate 

(PD=0.937) 

Simulation 

only; no 

validation in 

real 

environments 

Mohammed, 

Hasan, & 

Hamza, 

2024 

Modified 

Dijkstra 

Algorithm 

Modified 

Dijkstra 

(Energy-

Aware Path 

Cost) 

Incorporate 

residual 

energy and 

energy cost 

in Dijkstra’s 

cost function 

for routing in 

WSNs 

Python ACO 

Extended 

lifetime (605 

vs 81 rounds), 

lower death 

rate, slightly 

higher delivery 

rate (99.9%) 

Better for 

static 

environments; 

not robust for 

dynamic or 

multi-

objective 

cases 



    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 4
, 

Is
su

e:
 2

, 
S

ep
te

m
b

er
 ,

 2
3

, 
2
0

2
5
, 

©
 2

0
2

0
 F

JI
E

C
E

, 
A

ll
 R

ig
h

ts
 R

e
se

rv
ed

  

136 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

Tawfeek et 

al., 2025 

MACOA 

(Modified 

Ant Colony 

Optimization 

Algorithm) 

Multi-

objective 

ACO with 

Self-healing 

& Adaptive 

Exploration 

Improve 

reliability, 

load-

balancing, 

and energy 

efficiency 

through 

adaptive 

pheromones 

and fault-

tolerance 

NS-3 

EGA, 

IABC, 

DRL, 

PSO, E-

RARP 

Better lifetime, 

throughput, 

residual energy 

and stability 

No real-world 

testing; future 

work suggests 

fuzzy-logic 

integration 

and 

deployment 

 

4. Clustering-Based Routing Protocols in Wireless Sensor Networks. 

               Clustering-based routing has emerged as a cornerstone strategy in WSNs to mitigate energy 

constraints and enhance network scalability, fault tolerance, and data aggregation efficiency. By grouping 

sensor nodes into clusters and designating one node per cluster as the Cluster Head (CH), this hierarchical 

structure reduces redundant data transmissions and long-range communications between individual nodes 

and the base station (BS), thereby significantly conserving node energy and extending the overall network 

lifetime [36],[37]. The foundational Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol, 

introduced by Heinzelman et al. [38], pioneered this approach through probabilistic CH rotation to 

uniformly distribute energy consumption. Although LEACH provided substantial improvements in 

simulated environments, it lacked adaptability to heterogeneous energy distributions and mobility, leading 

to performance degradation in practical deployments. These limitations prompted the development of 

enhanced clustering frameworks that integrate intelligent decision-making techniques to optimize CH 

election and routing strategies. Recent advances have introduced hybrid clustering models that incorporate 

artificial intelligence, fuzzy logic, and metaheuristic optimization to refine CH selection, inter-cluster 

routing, and load balancing. Techniques such as K-Means, Kohonen Self-Organizing Maps (KSOM), 

Mamdani Fuzzy Inference Systems, Quantum Annealing, Particle Swarm Optimization, and Multi-

Strategy Snake Optimization have been employed to adaptively adjust clustering structures in response to 

dynamic network conditions [11],[30],[34],[39]. Moreover, some protocols have extended clustering logic 

to support mobility awareness, sector-based thresholding, and reinforcement learning, enabling CHs to be 

selected not only based on residual energy, but also considering contextual factors like proximity to sink, 

communication overhead, and neighbourhood density. This diversification of clustering methodologies 

demonstrates the potential of hybrid intelligent systems to enhance WSN energy efficiency under real-

world constraints [40],[41]. 

This section provides a comprehensive review of recent clustering-based routing protocols in WSNs, 

focusing on energy-aware techniques that improve CH election and inter-cluster routing. Each protocol is 

evaluated based on its methodological framework, simulation platform, performance gains, and 

limitations. 

Heinzelman et al. (2000) first proposed the original LEACH protocol, which used randomized cluster-

head rotation to divide the energy load among all nodes. Premature node death occurred close to the base 

station as a result of LEACH's setup overhead and lack of mechanisms to handle dynamic energy 

variation, despite its effectiveness in simulation [42].  

 



    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 4
, 

Is
su

e:
 2

, 
S

ep
te

m
b

er
 ,

 2
3

, 
2
0

2
5
, 

©
 2

0
2

0
 F

JI
E

C
E

, 
A

ll
 R

ig
h

ts
 R

e
se

rv
ed

  

137 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

Razzaq et al. (2018) developed the Optimal Packet Size with K-Means Clustering (OPSKC) protocol to 

overcome the static nature of LEACH. It combined an analytically determined optimal packet size that 

was adapted to the channel conditions with centralized K-Means clustering. Additionally, this method 

made a distinction between intra-cluster and inter-cluster communication energy consumption. Mobility 

and retransmission factors were not taken into account, but MATLAB simulation results showed 

reductions in overall energy usage and delayed node death when compared to K-Means Energy-Aware 

Clustering (KEAC) [43]. 

 

Bataineh et al. (2019) created a hybrid solution that combined Kohonen Self-Organizing Maps (KSOM) 

with K-Means clustering, which was improved by a neural conscience function. Although their model 

outperformed KSOM alone in real-world WSN scenarios, it increased network lifetime by 11.11% and 

reduced energy consumption by 3.33% [44]. 

 

To further enhance energy efficiency and scalability, Hu et al. (2024) introduced the Cluster Head Harris 

Hawk Fuzzy Optimization (CHHFO) protocol, leveraging a Mamdani fuzzy system and Harris Hawk 

Optimization (HHO). This dual-phase strategy identified CHs based on energy, proximity, and 

neighbourhood density, while HHO optimized relay node selection. The protocol reduced energy 

consumption by up to 39.79% and improved throughput, but lacked evaluation under dynamic topologies 

[45]. 

Another hybrid framework, Fuzzy-Quantum Annealing (FQA), was developed by Wang et al. (2024). It 

integrates Fuzzy Logic for CH election and Quantum Annealing for optimal multi-hop routing. Simulation 

across four scenarios revealed enhanced lifetime, throughput, and number of alive nodes, yet the protocol 

was limited to static WSN environments without mobile sink testing [46]. 

Yang et al. (2024) proposed a novel combination of the Multi-Strategy Snake Optimizer (MSSO) and 

Minimum Spanning Tree (MST) for both CH and relay selection. Their approach optimized intra- and 

inter-cluster performance using dynamic mutation strategies and fuzzy C-Means. The results showed 

consistent improvements of over 25% in energy savings and throughput compared to five benchmark 

protocols, though it remained simulation-based [47]. 

In their second contribution, Hu et al. (2024) proposed the Quantum Particle Swarm Optimization 

(QPSOFL) protocol, and merging it with fuzzy-based relay selection. The algorithm incorporated Sobol 

sequence initialization, Lévy flights, and Gaussian perturbation to avoid local optima. This resulted in 

superior network longevity and performance metrics, albeit tested only in MATLAB [48]. 

The KMSC algorithm, proposed by Zeng et al. (2024), introduced a threshold-based K-Means sector 

clustering approach, which applies clustering only when node density in a sector that exceeds a predefined 

limit. The CHs were selected based on energy and total communication cost. Hybrid routing (single-

hop/multi-hop) enabled the protocol to outperform traditional K-means and Energy-Efficient Clustering 

Protocol based on K-means (EECPK-means) schemes across several node death benchmarks [40]. 

Finally, Wang and Duan (2025) proposed Fuzzy-Logic and Q-Learning based Unequal Clustering and 

Routing (FQ-UCR) , combining Fuzzy Logic and Q-Learning for both CH election and inter-cluster 

routing. The model incorporated node centrality, residual energy, and neighbour count in fuzzy inference 

and dynamically selected the next-hop CH via reinforcement learning. While it outperformed EEUC and 
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CHEF in stability and lifetime, the absence of real-world validation and dataset use limits its applicability 

[49]. 

An in-depth comparative summary of these clustering-based protocols is provided in Table 3, capturing 

the diversity of hybrid techniques, energy models, and simulation outcomes. 

Table3: A Detailed Comparative Review of Clustering-Based Routing Protocols in Energy-

Constrained Wireless Sensor Networks. 

Study 

(Author, 

Year) 

Protoco

l Name 

Main 

Technique 

Research 

Objective 

Simulation 

Environment 

Compared 

Protocols 

Key 

Improvements 
Limitations 

Heinzelma

n et al., 

2000 

LEACH 

Randomize

d Cluster 

Head 

Rotation 

Reduce 

energy via 

randomized 

cluster-head 

assignment 

and local 

aggregation 

MATLAB 

(First-order 

radio model) 

Direct 

Comm., 

MTE 

8x less energy 

use; 3x longer 

network 

lifetime 

Simulation 

only; no real 

deployment; 

setup overhead 

ignored 

Razzaq et 

al., 2018 
OPSKC 

K-Means + 

Optimal 

Packet Size 

Reduce 

transmission 

energy via 

packet 

optimization 

and energy-

aware CH 

selection 

MATLAB KEAC 

Lower energy 

use, delayed 

FND, higher 

throughput 

Simulation 

only; ignored 

mobility, 

retransmissions 

Bataineh et 

al., 2019 

KSOM 

+ K-

Means 

Hybrid K-

Means + 

Self-

Organizing 

Maps 

Enhance 

clustering 

with neural 

network 

conscience 

function and 

residual 

energy 

MATLAB KSOM 

11.11% better 

lifetime, 3.33% 

energy savings 

Simulation 

only; no real 

validation 

Hu et al., 

2024 
CHHFO 

Fuzzy 

Logic + 

Harris 

Hawk 

Optimizatio

n 

Optimal CH 

and relay 

selection 

based on 

fuzzy fitness 

functions 

MATLAB 

R2022a 

EFCR, 

HHO-

UCRA, 

IHHO-F 

Up to 39.79% 

energy 

reduction; 

better 

scalability & 

throughput 

No dynamic 

testing or 

hardware 

validation 

Wang et 

al., 2024 
FQA 

Fuzzy 

Logic + 

Quantum 

Annealing 

CH selection 

using fuzzy 

metrics; 

optimal multi-

hop via 

Hamiltonian 

search 

MATLAB 

FRNSEER

, FC-

RBAT, 

BOA-

ACO, 

OAFS-

IMFO 

Superior 

lifetime, 

throughput, and 

alive nodes 

count 

Static sim only; 

no mobile sinks 

or real-world 

trials 
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5. Sleep Scheduling and Duty Cycling Techniques in WSNs. 
              Energy conservation remains a critical design objective in WSNs, especially for nodes operating 

in idle listening mode, which can account for a significant portion of total energy consumption even in the 

absence of active data transmission or reception. While advances in routing and clustering protocols have 

mitigated energy waste during communication, idle listening continues to drain energy unnecessarily 

particularly in dense or large-scale networks with intermittent sensing demands [36],[37]. To address this 

inefficiency, sleep scheduling and duty cycling techniques have emerged as essential strategies that 

dynamically transition sensor nodes between active and low-power states. These mechanisms aim to 

reduce idle energy consumption without compromising the quality of service (QoS), especially in long-

term deployments, time-critical applications, and energy-constrained environments [50],[51]. Sleep 

scheduling algorithms can be broadly classified into deterministic, adaptive, and intelligent schemes. 

Among the most promising are learning-based and optimization-driven frameworks that autonomously 

determine optimal wake or sleep intervals based on real-time network conditions, traffic patterns, residual 

energy, and data redundancy. To increase decision-making precision and responsiveness in the face of 

uncertainty, these frameworks are increasingly integrating neural networks, fuzzy systems, reinforcement 

learning, and evolutionary algorithms [13],[8]. 

 

This section provides a thorough analysis of current sleep scheduling and duty cycling strategies in 

WSNs, focusing on learning-driven and hybrid models that show reduced performance degradation, 

increased network lifetime, and enhanced energy efficiency. Each protocol is examined according to its 

methodology, scalability, real-world applicability, and simulation results. 

 

Huang et al. (2021) suggested a Q-learning-based MAC layer scheduler enhanced with linear regression 

function approximation as one of the more recent contributions. Their approach used the idle listening 

Yang et 

al., 2024 

MSSO 

+ MST 

Multi-

Strategy 

Snake 

Optimizer + 

MST 

CH and relay 

selection 

based on 

energy/distan

ce + optimal 

inter-cluster 

routing 

MATLAB 

LEACH, 

ESO, 

EEWC, 

GWO, 

EECHS-

ISSADE 

25–52% better 

stability, 

energy, 

throughput 

Only 

simulation; no 

testbed or 

mobility 

adaptation 

Hu et al., 

2024 

QPSOF

L 

Quantum 

Particle 

Swarm 

Optimizatio

n + Fuzzy 

Logic 

CH selection 

via QPSO, 

relay via 

fuzzy logic on 

energy and 

distance 

MATLAB 

E-FUCA, 

IHHO-F, 

F-GWO, 

FLPSOC 

Improved 

scalability, 

energy savings, 

lifetime 

No real-world 

or mobile node 

validation 

Zeng et al., 

2024 
KMSC 

Threshold 

K-Means 

Sector 

Clustering 

Balance 

energy using 

sector-based 

clustering 

with CH 

thresholds 

MATLAB 

EECPK-

means, K-

means, 

TSC, LSC, 

SEECP 

Improved FND, 

HND, LND 

metrics 

No mobility 

scenarios or 

field 

deployment 

Wang & 

Duan, 

2025 

FQ-

UCR 

Fuzzy 

Logic + Q-

Learning 

CH selection 

via fuzzy 

metrics; Q-

Learning for 

inter-cluster 

next-hop 

MATLAB 
EEUC, 

CHEF 

Better stability, 

lifetime, 

throughput 

No real datasets 

or deployment 
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ratio as the action, and defined the system state as the normalized queue load. A reward function 

incorporating both energy consumption and latency was used to learn optimal duty cycles. The approach 

outperformed Sensor-Medium Access Control (S-MAC) and Fully Active (FA) protocols in NS-3 

simulations under varying traffic loads but lacked theoretical modelling and real-world validation [13]. 

Wang et al. (2023) introduced Reinforcement Learning-based Sleep Scheduling Algorithm for 

Compressive Data Gathering (RLSSA-CDG), a model-free Q-Learning algorithm designed to enhance 

compressive data gathering (CDG) through energy-aware sleep scheduling. Each node participated in a 

distributed learning process using a shared Q-table to decide when to activate or sleep. Simulation results 

demonstrated substantial energy savings (42.42%) and extended network lifetime by over 57%, with an 

84.7% improvement in data recovery accuracy. However, the forwarding phase relied on traditional 

routing, and the solution was validated only in simulated environments [52]. 

A more complex and integrated solution was offered by Nithyanandh et al. (2023) through their Energy-

Aware Protocol with Improved Fitness-Based Algorithm (EAP-IFBA) protocol, which combines Firefly 

Algorithm, Elliptic Curve Cryptography (ECC), and Recurrent Neural Networks (RNNs). This protocol 

aims to jointly optimize adaptive sleep scheduling, secure data transmission, and anomaly detection in 

large-scale IoT networks. Evaluated on OMNET++ with up to 2500 nodes, the method achieved 98% 

sleep efficiency, a network lifetime of 98%, and strong resilience (96.5%) to security threats. However, its 

performance degraded under uneven deployments and in heterogeneous environments [53]. 

Jeyakarthic and Selvakumar (2024) focused on a smart CH selection and sleep scheduling model with 

real-time duty cycle optimization and data aggregation. Their gradient-based adaptive scheduler 

minimized redundant transmissions and conserved energy by adjusting node states dynamically. The 

system achieved a packet delivery ratio (PDR) of 98.24% and an energy consumption rate of only 85 mJ 

per packet, surpassing threshold-based and dynamic scheduling approaches. Still, validation was limited 

to MATLAB simulations without real IoT traces [54]. 

A learning-driven approach was also employed by Chaya and Shylaja (2024), who proposed an 

Artificial Neural Network (ANN)-based model for predictive sleep-wake scheduling. Their method 

integrated dynamic programming for routing optimization and used ANN to model energy trends and 

decide on sleep states in real-time. Despite achieving improved energy efficiency and network longevity, 

the protocol introduced high computational complexity and potential latency due to ANN training and 

frequent state transitions [55]. 

Lastly, El-Shenhabi et al. (2025) developed RLDCSSA-CDG, a comprehensive Q-learning-based 

framework that combines cluster formation, UCB-driven CH selection, and sleep scheduling for 

compressive data gathering. The system reduces redundant transmissions using compressive sensing (CS) 

and adjusts node activity adaptively to maximize lifetime and accuracy. Simulations showed 63.3% fewer 

transmissions and 91.1% data recovery accuracy compared to existing models, yet the approach was still 

untested on physical hardware [56].A comparative evaluation of these protocols is provided in Table 4, 

summarizing key techniques, objectives, performance outcomes, and limitations. 
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Table4: Comparative Evaluation of Sleep Scheduling and Duty Cycling Techniques for Prolonging 

Wireless Sensor Network Lifetime. 

Study 

(Author, 

Year) 

Protocol 

Name 

Main 

Technique 

Research 

Objective 

Simulation 

Environment 

Compared 

Protocols 

Key 

Improvements 
Limitations 

Huang et 

al., 2021 

Q-learning + 

Linear 

Regression 

Duty 

Scheduler 

Q-Learning + 

Linear 

Regression 

(Function 

Approximation) 

Optimize 

MAC layer 

scheduling 

by 

minimizing 

idle 

listening 

using queue 

load and 

delay 

metrics 

NS-3 

(linear/tree 

topologies) 

S-MAC, 

Fully 

Active 

(FA) 

Improved 

energy 

efficiency, 

lower latency, 

higher 

throughput 

under dynamic 

traffic 

Empirical 

tuning, no 

analytical 

model; not 

field tested 

Wang et 

al., 2023 

RLSSA-

CDG 

Model-Free Q-

Learning for 

Sleep 

Scheduling + 

Compressive 

Data Gathering 

Minimize 

energy via 

active node 

selection 

based on 

residual 

energy and 

uniform 

sampling 

Simulated 

(not specified) 

DSSA-

CDG, 

Sparse-

CDG 

4.64–42.42% 

energy savings, 

57.3% longer 

lifetime, 84.7% 

better accuracy 

Still uses 

shortest-path 

forwarding; 

no real 

deployment 

Nithyanand

h et al., 

2023 

EAP-IFBA 

Firefly Bio-

Inspired + ECC 

+ RNN + Q-

Learning 

Secure, 

energy-

aware 

adaptive 

sleep 

scheduling 

and 

abnormal 

data 

detection 

for IoT 

WSNs 

OMNET++, 

2500-node 

scale 

IWD-ARP, 

ECC-

ILEACH, 

RLSSA-

CDGP 

High 

robustness 

(96.5%), 98% 

sleep 

efficiency, 8% 

depletion rate 

Less 

effective in 

uneven 

deployments; 

homogeneou

s settings 

only 

Jeyakarthic 

& 

Selvakuma

r, 2024 

Smart CH 

Selection 

with Duty 

Cycling & 

Aggregation 

Gradient-based 

duty scheduling 

+ data 

aggregation 

optimization 

Reduce 

transmissio

n energy 

via smart 

scheduling 

and 

optimized 

cluster head 

operation 

MATLAB 

Threshold-

based, 

Dynamic 

Scheduling

, EE-

Scheduling 

Throughput = 

2800 pkt/s, 

PDR = 

98.24%, 85 

mJ/pkt 

consumption 

Only 

simulation; 

lacks IoT test 

data 

validation 

Chaya & 

Shylaja, 

2024 

ANN-based 

Routing + 

Sleep 

Scheduling 

Artificial 

Neural 

Networks + 

Dynamic 

Programming 

Predictive 

energy 

modeling 

and real-

time 

adaptive 

duty 

cycling 

Simulated 

Traditional 

routing + 

static 

scheduling 

Longer 

lifetime, 

efficient energy 

use, reliable 

delivery 

High 

complexity, 

possible 

latency, 

needs large-

scale 

hardware 
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6. Discussion and Future Research Directions 

              The reviewed literature across four key domains Q-Learning-based routing, traditional 

optimization algorithms, clustering-based protocols, and sleep scheduling, highlights a rich diversity of 

strategies aimed at reducing energy consumption and improving data delivery in WSNs. Each category 

contributes distinct strengths and faces inherent limitations, suggesting that no single strategy offers a 

universal solution for all WSN scenarios. 

From the Q-Learning-based routing protocols, it is evident that model-free reinforcement learning enables 

nodes to dynamically adapt routing decisions to environmental changes and residual energy levels. 

However, nearly all proposed models including RLBR, EDACR, RLBEEP, and CRP-Optimizer remain 

limited to simulation environments, with no large-scale real-world deployments. Furthermore, congestion 

near sink nodes, state-space complexity, and convergence speed remain open challenges for Q-Learning-

based systems. Even though Q-Learning has proven to be highly adaptive and capable of making wise 

decisions in WSN routing, its real-world uses are still mostly limited to simulation-based research.  

Additionally, the algorithm suffers from state-space complexity that restricts scalability and convergence 

delays that necessitate multiple iterations to stabilize.  These drawbacks imply that more investigation is 

necessary to resolve Q-Learning's scalability issues and validate it in actual sensor deployments. 

Traditional optimization methods like WOA, ACO, and modified Dijkstra continue to serve as baseline 

references, especially in static or homogeneous environments. These models are often more interpretable 

and computationally efficient, but their slow adaptation to dynamic events and dependence on global 

knowledge hinder their scalability. Moreover, most of them such as MACOA and AACDIC focus 

predominantly on CH selection, with limited attention to inter-cluster or multi-hop optimization, which is 

increasingly crucial in large-scale deployments. 

In clustering-based routing, recent studies have shown strong performance improvements when hybrid 

techniques are used—especially when combining fuzzy logic, swarm intelligence, or quantum-inspired 

methods. Protocols such as FQA, CHHFO, and MSSO+MST demonstrate measurable gains in lifetime 

and load distribution. Nonetheless, many of these models assume static network topologies and 

homogeneous energy distributions, which are rarely applicable in practical WSNs. There is a growing 

need for mobile-sink-aware and heterogeneous node clustering mechanisms. 

with 

routing 

optimizatio

n 

El-

Shenhabi et 

al., 2025 

RLDCSSA-

CDG 

Q-Learning + 

UCB + 

Compressive 

Sensing 

Balance 

intra-cluster 

correlation 

and sleep 

scheduling 

for efficient 

CDG 

MATLAB 
RLSSA, 

RLDCA 

Up to 63.3% 

transmission 

reduction, 

38.8% energy 

saving, 91.1% 

recovery 

accuracy 

No hardware 

validation; 

simulated 

only 
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Sleep scheduling and duty cycling approaches remain underutilized in many energy-aware WSN models. 

Although protocols like RLSSA-CDG and EAP-IFBA achieve impressive results reducing idle listening 

and prolonging network lifetime many routing models, they do not integrate sleep management, leading to 

avoidable energy wastage. A key observation is that joint optimization of routing, clustering, and sleep 

scheduling through reinforcement learning or hybrid models offers the greatest potential for achieving 

sustainability, yet remains underexplored. 

 

7. Identified Research Gaps and Future Opportunities: 

1. Real-World Validation: Most reviewed protocols rely solely on simulation (MATLAB, NS-2/3). 

Future research should prioritize hardware implementation or deployment on WSN testbeds (e.g., 

IoT-LAB, FIT IoT). 

2. Heterogeneous and Mobile Environments: Many models assume homogeneous node energy and 

static topologies. Future designs must address node mobility, energy harvesting capabilities, and 

non-uniform energy distributions. 

3. Cross-Layer Design Integration: The decoupling of routing, clustering, and duty cycling in most 

works limits holistic optimization. Integrated frameworks that jointly optimize these layers, 

possibly using deep reinforcement learning (DRL), represent a promising avenue. 

4. Lightweight and Distributed Learning: Given the constraints of sensor nodes, there's a critical need 

for low-overhead RL models that do not depend on centralized learning or require large memory. 

5. Security-Aware Energy Optimization: Protocols like EAP-IFBA demonstrate the feasibility of 

combining encryption, anomaly detection, and energy scheduling. Future work could explore 

multi-objective optimization models that balance energy, delay, and security. 

6. Dataset Availability and Benchmarking Standards: A key limitation in current research is the lack 

of standardized datasets and performance benchmarks. Building open-source simulation 

environments with realistic WSN traces would improve reproducibility and comparison. 

 

8. Conclusion 
               This review has systematically analyzed and compared recent advances in energy-efficient 

routing techniques for WSNs, focusing on four major categories: Q-Learning-based routing, traditional 

optimization algorithms, clustering-based protocols, and sleep scheduling and duty cycling strategies. 

Each of these domains offers unique approaches to addressing the energy constraints inherent in WSNs, 

and their comparative evaluation reveals critical insights into the current state of research and future 

innovation paths. Reinforcement learning, particularly Q-Learning, enables nodes to learn optimal 

forwarding decisions dynamically, enhancing adaptability and network lifetime. While conventional 

algorithms such as WOA and ACO provide basic robustness and simplicity, they are not flexible in real-

time or mobile environments. Clustering-based approaches remain effective in reducing transmission 

overhead, especially when enhanced through fuzzy logic, neural networks, or evolutionary computation. 

Meanwhile, duty cycling and sleep scheduling continue to play a fundamental role in minimizing idle 

energy waste, yet remain under-integrated in many current routing protocols. Despite the significant 

progress, a recurring limitation across most protocols is their exclusive reliance on simulation 

environments. Furthermore, few models address the complexities of heterogeneous networks, mobile 

sinks, or integrated cross-layer optimization. The future of WSN design lies in holistic and intelligent 
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systems that combine adaptive routing, cluster management, and power scheduling into unified, 

lightweight frameworks capable of learning and evolving over time. By identifying key strengths, 

limitations, and research gaps in the existing literature, this review provides a foundation for the 

development of next-generation, energy-aware WSN protocols. These protocols should be capable of 

sustaining long-term operations in real-world environments while adapting to dynamic network 

conditions, security threats, and evolving data demands. 
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