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Abstract.  With the continuous development of the cybersecurity field, detecting unknown or zero-

day attacks remains a significant challenge due to their unpredictable behavior. This paper proposes a 

novel biologically inspired approach to detecting unknown SQL Injection (SQLi) attacks using the Slime 

Mould Algorithm (SMA). This method leverages the adaptive and heuristic capabilities of the SMA to 

detect unknown attacks. A binary classification model was developed and trained on a benchmark dataset 

containing both natural queries and diverse SQLi attack vectors, including Out-of-Band, Boolean-based, 

Time-based, and Union-based injections. To ensure robustness and generalization, K-Fold cross-

validation was employed. The SMA-based model demonstrated superior detection capabilities, 

particularly in identifying zero-day attacks that deviate from known patterns. The experimental results 

reveal promising detection rates across all attack types: 89.33% for Out-of-Band-based SQLi, 97.89% for 

Boolean-based SQLi, 90.27% for Time-based SQLi, and 96.69% for Union-based SQLi, and 91.51% for 

Error-based SQLi. These results underline the effectiveness of SMA in generalizing beyond seen data, a 

critical advantage in dynamic threat environments. Compared to traditional machine learning models, the 

SMA-based classifier achieved higher accuracy and F1 scores, confirming its potential as a powerful tool 

for web application security.  
 

Keywords: Slime Mould Algorithm, Zero-Day Attack, SQL Injection, Web Security  
 

 

 

1. INTRODUCTION  

Cybersecurity has become a critical concern with the rapid development of web-based 

technologies. Among the most dangerous threats are zero-day attacks, which exploit previously unknown 

vulnerabilities.  Many web applications collect users' personal information and interact with users. So, 

they always connect to the database. Due to the large amount of valuable data stored in the database, it 

naturally becomes the target of attackers, so there are more and more SQLi attacks [1]. SQLi is a type of 

web attack that exploits a database query vulnerability to access and manipulate sensitive and important 

data [2]. A recent security report highlighted that 6.7% of all vulnerabilities discovered in open-source 

projects in 2024 are SQLi vulnerabilities, while 10% of vulnerabilities in closed-source projects were 

SQLi-related [3]. Despite improvements, the total number of SQLi vulnerabilities found in open-source 

projects is expected to increase from 2,264 in 2023 to over 2,400 by the end of 2024 [3]. According to the 

Web Attack Trend Report, SQLi remains one of the most common types of web attacks where it 

accounting for 37.36% of all detected web attacks during the monitored period. These figures underscore 

the persistent threat posed by SQLi and the urgent need for intrusion detection systems capable of 

accurately detecting and mitigating these attacks in real-time [4]. 

mailto:ahmedi.altufaily@student.uokufa.edu.iq
https://doi.org/10.46649/fjiece.v4.2.7a.23.9.2025
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SQLi attack refers to the construction of special strings as parameters to be transmitted to web 

applications by submitting web forms or inputting query strings of domain names or page requests. These 

special strings often contain some executable statements in the SQL grammar, which make web 

applications mistake data as code to execute and ultimately deceive servers to execute malicious SQL 

commands. The main reason is that the web application does not filter the users' input data accurately, so 

the database is invaded. Existing methods for identifying SQLi attacks include regular matching [1]. 

Various detection and prevention techniques, such as stored procedures, input validation, whitelisting, 

parameterized queries, and Artificial Intelligence (AI), have been proposed to tackle SQLi threats [6][7]. 

AI techniques have been successfully applied to develop intelligent defense mechanisms across diverse 

domains, such as network security [8], mitigation of cross-site scripting attacks [9], and safeguarding 

mobile platforms [10]. Furthermore, machine learning (ML) methods have been tested and utilized to 

detect SQLi attacks, and the results are promising [6]. Bio-inspired algorithms, a subset of ML techniques, 

have been successfully employed to address optimization challenges across diverse domains, including 

cybersecurity [6]. 

In this paper, a bio-inspired algorithm named Slime Mould Algorithm (SMA) is used. This 

algorithm was introduced in 2020 [4]. SMA mimics the foraging behavior of Physarum polycephalum, a 

slime mould known for its efficient network formation. The algorithm mimics the organism's oscillation-

based search mechanism, where virtual "slime agents" explore the solution space by dynamically 

adjusting their locations based on food quality (fitness). High-quality solutions draw more slime agents to 

them, leading to more focused searching in that area, while poorer solutions cause the agents to spread out 

and search more widely to keep moving forward. SMA balances exploration and exploitation through 

adaptive weight updates and stochastic components, mimicking the Mould's natural feedback system. 

SMA is known for optimization but has not been explored for classification. To our knowledge, this is the 

first time it has been used as a classifier. Our main contribution is to train SMA to detect zero-day attacks. 

However, most existing ML- and DL-based detection systems rely on static or signature-dependent 

models, which fail to identify novel or zero-day SQL injection patterns. Therefore, this study aims to 

develop a bio-inspired intrusion detection model based on the SMA that can dynamically adapt to unseen 

SQLi behaviors. The research addresses the gap in zero-day attack detection by leveraging the SMA’s 

adaptive exploration–exploitation mechanism to enhance detection accuracy and robustness. 

This research details: Section 1 provides an introduction, while Section 2 describes related work. 

Section 3 defines SQLi and discusses its types. Section 4 explains the algorithm used in this research, 

detailing the dataset, feature extraction, and performance metrics. Section 5 presents the results for 

detecting unknown attacks and compares them with recent research on detecting unknown attacks. Section 

6 presents the research conclusions and future directions. 

 

2. RELATED WORK 

         Detecting zero-day attacks remains a significant challenge due to the evolving nature of cyber 

threats and the limitations of signature-based systems. Several researchers have explored intelligent and 

adaptive solutions 

Cumi-Guzman et al. [11] developed a Random Forest-based classification model for detecting 

SQL Injection (SQLi) attacks, achieving a notable accuracy of 97.3%. The model was trained on a curated 
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dataset of 22,931 SQL statements using 82 syntactic and semantic features. While the classifier 

demonstrated strong generalization and interpretability, especially in identifying critical SQL elements 

linked to malicious activity, it showed vulnerability to overfitting due to the high dimensionality of the 

feature space.  

Rosca et al. [12] proposed a ML architecture for SQLi attack detection that integrates syntactic 

normalization with semantic feature extraction. The integration allows for a more accurate attack 

detection. The study involved Azure ML Studio for 15 models and sampling combinations on a 90,000 

SQL queries dataset, which consisted of normal and malicious queries. The Voting Ensemble, which is 

the most accurate model of their study, achieved excellent results, with 96.86% overall accuracy, a 

weighted F1-score of 96.77%, and a weighted AUC of 98.25%, demonstrating impressive classification 

proficiency. Ablation analysis showed that the feature named query_length was a necessary condition for 

the model to work, as system accuracy dropped to around 80.54% without it. Their results effectively 

argue the SQLi detection attack reliability of their lightweight interpretive feature. 

Maha et al. [13] the author proposes an architecture for detecting SQLi attacks using a recurrent 

neural network (RNN) auto encoder model. The experimental results show that the proposed approach 

achieved an accuracy of 94% and an F1-score of 92%, outperforming various other machine learning 

models like ANN, CNN, DT, NB, SVM, RF, and LR   

 M. Shahbaz et al. [14] used a CNN-based model achieving 98.16% accuracy, but their research 

lacks comparisons with other deep learning models, and deep learning models require large computational 

resources, making them unsuitable for limited computational resources. 

Jarudat et al. [15], four distinct machine learning techniques, namely gradient boosting (GB), 

MLP, LR, and k-nearest neighbor (KNN), were used to improve model performance and identify the most 

effective configuration. The tree-based pipeline optimizer (TPOT) and genetic algorithm (GA) were used. 

The dataset provided by the Canadian Institute 2023, which includes various types of attacks, served as 

the basis for testing the model. Notably, the accuracy values achieved by GB for precision, recall, and F1 

score were 95%, 94%, and 95%, respectively. 

Lu and Traore [16] were among the early pioneers to apply Genetic Programming (GP) for 

intrusion detection, successfully evolving rules to identify previously unseen variants of DoS attacks in 

the DARPA 1999 dataset.  

Blasco et al. [17] guided the GP evolution process using advanced IDS evaluation metrics, 

enhancing its effectiveness in zero-day detection. 

Alyasiri et al. [8] evaluated three evolutionary computing techniques, namely GP, GE, and CGP to 

detect known and unknown cyberattacks for web and network attacks. By removing specific attack types 

from the training phase, their system simulated zero-day scenarios and demonstrated strong 

generalization, with CGP achieving the highest detection rate for unknown attacks. These results confirm 

the effectiveness of evolutionary models in identifying previously unseen threats across multiple datasets.. 

Waheed and Alyasiri [18] proposed an evolutionary learning-based method for Android malware 

detection using the evtree algorithm. Their model was trained and tested on the CICMalDroid2020 

dataset, achieving 99.11% detection accuracy, 96.14% precision, and an F1-score of 97.60%. The results 

showed strong performance in identifying unknown malware excluded from training, validating its 

suitability for detecting zero-day threats. 
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Kamarudin et al. [19] proposed a hybrid intrusion detection system using LogitBoost combined 

with Random Forest to identify both known and unknown web attacks. The system was evaluated using 

the NSL-KDD and UNSW-NB15 datasets, achieving an accuracy in detecting new attack patterns. The 

model’s ability to identify anomalies and zero-day attacks was validated by high precision and recall rates 

on the test datasets. 

In contrast to previously mentioned works, this study introduces SMA as a nature-inspired 

optimization technique for detecting unknown  SQL injection attacks. Using the SMA, the proposed 

system improves the decision boundary and enhances the detection accuracy of previously undetected 

threats. Experimental results confirm the model's ability to generalize effectively, outperforming many 

existing approaches.   

 

3.  BACKGROUND ON SQL INJECTION ATTACKS AND TYPES 

Web-based applications typically adhere to a three-tier architecture: a presentation tier for the user 

interface, a business tier for logical operations, and a data tier for data management. It retains all the 

structured data. A SQLi attack capitalizes on weaknesses across all three tiers of a system to execute a 

successful breach [20]. Malicious SQL instructions, delivered from the presentation layer to the business 

tier, alter existing SQL queries, leveraging the database tier to access resources.  The lack of validation at 

both the presentation and operational tiers of web applications facilitates a successful SQLi attack [21]. 
 

 

Figure (1) SQLi Attack Workflow 

 

3.1. Types of SQL Injection 

SQLi can be employed in several ways to induce significant issues. Through the utilization of 

SQLi, a malicious individual could circumvent the authentication process, get unauthorized entry, and 

manipulate, and eradicate data stored within a database. SQLi can, in certain instances, facilitate the 

execution of commands on the operating system, hence enabling an attacker to possibly escalate to more 

destructive operations within a system. The backend network is protected by a firewall. SQL Injection can 

be categorized into three primary classifications -In-band SQLi, Inferential SQLi Additionally, there is a 

type of SQL injection called Out-of-band SQLi [22].  
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Union-based SQLi is a method of SQLi that exploits the UNION SQL operator to merge the 

outcomes of many SELECT statements into one result, which is subsequently included in the HTTP 

response [23].  

The term blind means that the SQLi is performed when the programmer has set a generic custom 

error message in case web application encounters an error [24]. Without displaying error messages, 

database vulnerabilities can be protected. The hacker has to deal with a database system that does not 

display error messages and as an alternative, hackers submit a series of "TRUE" and "FALSE" queries via 

SQL queries [25]. Information about the database will be revealed through the results of these queries.  

Time-based SQLi means hackers obtain information on database based on response times. SQL 

command is sent to database with code to force the database to wait for a specified amount of time during 

the execution of the queries. The response time indicates whether the result of the query is true or false. 

While waiting for the query to be processed, the attacker able to execute another query and might inject 

malicious code in the query [26].  

Blind SQLi refers to a type of SQLi when the attacker does not receive a response from the 

targeted program through the same communication channel. Instead, they are able to manipulate the 

application to send data to a remote endpoint that they have access over.  

Out-of-band SQL injection can occur if the server being used has instructions that can initiate 

DNS or HTTP requests. Nevertheless, this applies to all widely used SQL servers [27].  

Error-based SQLi is an in-band SQLi technique that relies on error messages thrown by the 

database server to obtain information about the structure of the database. In some cases, error-based SQL 

injection alone is enough for an attacker to enumerate an entire database. While errors are very useful 

during the development phase of a web application, they should be disabled on a live site or logged to a 

file with restricted access instead [36]. 

 

4. METHODOLOGYS 

4.1. Dataset Preparation 

  In this study, open-source data was collected from the Kaggle repository. Several scattered data 

sets were collected, cleaned, and remove the duplicate. The data for this study came from two main 

sources:  

1. The SQLi-XSS dataset [28], which contains various data from web attacks, particularly SQLi attacks.   

2. The SQL injection dataset [29], which includes both malicious and natural data, making it suitable for 

an intrusion detection system.  

The data was processed and filtered to ensure accuracy, and the most important features were 

extracted, enhancing the system's ability to accurately distinguish between malicious and natural data. A 

total of 64,172 queries were collected, classified into two categories: approximately 25,865 normal and 

38,307 malicious. A multi-class dataset was created that included four attacks, in addition to normal 

queries based on their pattern and methodology of execution. This ensures the system's ability to 

effectively predict different types of attacks. The collected dataset included five types of SQLi namely 

Boolean-based, Out-of-band, Union-based, Time-based, and Error-based. Each attack type was 

categorized accordingly, allowing the dataset to be structured for multi-class classification. Classification 

facilitates a more detailed detection approach, enabling the model to distinguish between normal and 

malicious queries and classify the specific type of SQLi attack.  
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Figure (2) Dataset Category Distribution 

 

In this study, 26 features were extracted from the dataset to improve the performance of the 

classification system. The feature selection process was guided by domain expertise and statistical 

analysis to ensure their suitability for the classification task. The selected features covered various aspects 

of SQL queries, such as their structure, logical conditions, and the use of special symbols. This helps the 

model distinguish between normal and malicious queries. The feature extraction process involved 

analysing text, metadata, and linguistic patterns to detect any indication of an SQLi attack. Preprocessing 

techniques, such as normalization and feature segmentation, were also used to ensure data consistency and 

smooth operation on different datasets. The selected features serve as the primary input for the machine 

learning model and help improve classification because they focus on several important aspects of queries. 

The selection of these features is consistent with previous studies in cybersecurity and machine learning. 

For example, Recio-Garcia et al. [30] emphasized the importance of analyzing keywords and grammatical 

patterns, considering features such as “contains contains union”, and “contains location”. Comi-Guzman 

et al. [31] showed that even minor changes in query structure affect classification. For this purpose, they 

used features such as query length, number of numbers, and ratio of keywords. Tang et al. [32] focused on 

the role of special characters in SQL injection detection using neural networks, justifying the use of 

features such as “contains a single quote”, “contains a semicolon”, and the proportion of special 

characters. Gao et al. [33] analyzed query behaviour, demonstrating the importance of evaluating logical 

operators such as “contains AND”, “contains OR”, and “contains Equals” to determine malicious intent. 

Overall, the features they chose are based on extensive research and have proven effective in accurately 

classifying SQL injection attacks. 

 

4.2. Feature Correlation Matrix    
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          Feature correlation is one of the basic statistical methods to understand the relationship and 

interdependence between features in a dataset. It gives an understanding of the way changes in one 

feature may impact or be linked up with changes in another. Correlation analysis is especially important in 

the context of security, as it helps identify the most relevant and informative features of the data that 

separate normal behaviour from malicious entities. Analysts can identify redundancy in the dataset by 

assessing how much features are correlated with each other. Feature correlation analysis was conducted 

to identify redundant or highly correlated features within the dataset. As shown in Figure (3), features 

such as query_length and word_count showed strong positive correlation, indicating potential redundancy. 

On the other hand, features like Query_Entropy and uppercase_count demonstrated low correlation with 

others, making them valuable candidates for classification retaining all of them might lead to overfitting 

and increased computational complexity, since highly correlated features often convey similar 

information. Thus, correlation analysis can help reduce dimensionality by finding and removing 

unnecessary features, which in turn enhances the efficacy of machine learning algorithms by streamlining 

the features and improving generalization. The correlation matrix is commonly prepared in this analysis, 

which shows pairwise correlations for all the features. It aids with selecting features that are highly 

correlated to target class and have little correlation among themselves, which is good as input for 

predictive models training. 
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Figure (3) Feature Correlation Matrix 

 

4.3 Proposed System 

The proposed system introduces an innovative approach to attack detection. It uses SMA 

algorithm to accurately detect SQLi attacks. This algorithm is inspired by the behaviour of slime Mould, 

which exhibits remarkable problem-solving capabilities when searching for food. In the context of attack 

detection, it is used to achieve the following: 

1. Search space exploration: The algorithm intelligently searches for optimal solutions between 

exploration (Global search) and exploitation (local search). 

2. Adaptation to data pattern: The slime Mould algorithm adapts by dynamically adjusting search paths 

based on the quality of the solution, making it highly adaptable to different attack patterns  

3. Classification boundary optimization: By adjusting its parameters, it can effectively separate different 

data classes, such as SQL attacks. 

The performance of SMA depends largely on its parameters, which are carefully tuned to achieve  

optimal results. These parameters include: 

1. Pop_size: This represents the number of solutions in the set. As the object size increases, the diversity 

of solutions increases, but it also increases computational complexity. In this system, we used 150 to 

balance finding the optimal solution with computational efficiency. 

2- epoch: This parameter specifies the maximum number of iterations the algorithm can run. Increasing 

the number allows for a more thorough exploration of the search space but increases training time. In this 

system, the algorithm was set to run for 1,000 iterations to ensure convergence to the optimal solution. 

3- P-t: The exploration-exploitation balance parameter controls the behaviour of the slim Mould 

oscillations, balancing exploration and exploitation. A smaller value encourages exploitation, while a 

larger value encourages exploration (0.1) was chosen to balance exploration and exploitation [34] 

4- Search Space Boundaries (lb and ub): 

-These parameters define the lower and upper bounds of the search space. 

-The search space is constrained to ensure that the solutions remain within feasible limits. 

-In this system, the search space is defined as [-1, 1] for each dimension, ensuring that the weights remain within a 

reasonable range. 

5- Objective Function: 

-The objective function evaluates the fitness of each solution based on classification performance (e.g., F1-score). 

- The F1-score retrieval was chosen because the data was unbalanced to find a higher accuracy for the system 

The Slime Mould Algorithm (SMA) works through the stages of food search, as it simulates the behaviour 

of slime Mould in nature when exploring food resources and exploiting them in an intelligent way, which 

helps it find optimal solutions. The figure 4 illustrates the basic steps of the SMA algorithm. 
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Figure (4) Illustrates SMA algorithm steps 

In the proposed method, the SMA is optimized to act as an independent classifier, enabling it to 

make decisions by analyzing various patterns and solve complex problems arising from the behavior of 

SMA in their search for food. This algorithm is based on simulating slime mould movement in the 

environment. In the proposed SMA-based classification framework, each candidate solution encodes a 

vector of raw scores corresponding to the possible class labels. These scores are passed through the 

softmax function to transform them into normalized probability distributions, ensuring comparability 

across classes. The predicted class is then determined by selecting the class with the maximum probability 

using the argmax operation. A (softmax) activation function was used to convert the results into easily 

interpreted probabilities, which in turn convert the outputs into probabilities that reflect the degree of 

affiliation enabling the system to perform with high confidence [35].Comparative experiments with 

traditional algorithms 

show that the 

proposed approach 

has a better classification performance in intrusion detection system, and can effectively distinguish 

between both malicious data and normal data, achieve real-time detection of two types of data while 

ensuring scalability and separability in practical applications. This is a methodology that prevent SQLi 

attacks. The system architecture we propose includes data gathering, loading into the model, cleaning and 

processing, feature preprocessing and extraction, standardization and binary classification. During the 

training phase K-stratified cross-validation is used to maintain robustness and generalization capability of 

the model. This procedure splits the data into a few folds and trains using some but not all of them, 

averages their results while validating on one or more of the other folds, resulting in less overfitting and 

greater stability of results. 

To simulate a real-world zero-day attack scenario, where the system must detect a new attack 

variant it has never encountered before. The instances of a variant of SQLi attacks in the dataset were 

removed from the training set and added to the testing set. Then, the best evolved SMA classifier was 

tested against the removed SQLi variant. The complete workflow of the proposed SMA classifier 

framework is outlined in Algorithm 1 and described in Figure 5. 

Algorithm1  : The Proposed System  
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Input: Dataset with Normal and SQLi Query  

Output: Best SMA model  

1. Start  

2. Preprocess the data  

     a. Features Extraction 

     b. Label Encoder  

     c. Standardization  

3. Split the data into training and testing sets.   

4. Initialize the SMA population (solutions).   

5. Score =np.dot (X_Train, SMA Weight.T) 

6. Repeat until the maximum number of iterations is reached:   

   a. Apply the Softmax function outputs.   

   b. Evaluate each solution using the F1-score metric.   

   c. Update weights and positions using SMA update equations.   

7. Select the best SMA solution.   

8. Evaluate the final model on the testing set.   

9. Report the performance metrics: Accuracy, Recall, Precision, F1-

score  

10. End  
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Figure (5) Architecture of the Proposed SMA-Based method for Detecting SQL Injection and Zero-Day Attack. 

4.3. Training and Evaluation 

The model was trained and evaluated using an open-source SQLi attack classification dataset. 

Preprocessing and feature extraction, including encoding and standardization, were supervised. SMA was 

used as a classifier, and a Soft Max activation function transformed the raw system outputs into 

probability distributions to ensure the reliability of the results. We evaluated the system using accuracy 

metrics, F1 score, and classification report analysis. These metrics provided a comprehensive assessment 

of the system's ability to distinguish between malicious and normal queries and detect zero-day attacks. 

All experiments were conducted on a Lenovo PC with an Intel Core™ i3-3110M processor. A 2.40 GHz 

processor, 12 GB of RAM, and Windows 10 Pro (64-bit, x64) are implemented using Python and leverage 

key machine learning and nature-inspired algorithmic libraries, including NumPy, Matplotlib, Pandas, 

Scikit-learn, Time, Seaborn, and Mealpy.  

One Class Out of Training 
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4.4. Performance Metrics 

The metrics used to evaluate the performance of the proposed system are accuracy, recall, 

precision, and F1-score. These classification measures are based on the confusion matrix, serve to 

evaluate performance. Accuracy measures the percentage of total queries in a dataset that are correctly 

classified by the SMA classifier. It is calculated using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                  (1) 

In this content, True Positive (TP) shows the count accurately detected as SQLi. When valid 

queries are accurately classified as normal, it is called a True Negative (TN). Queries that are not SQLi 

but were incorrectly classified as SQLi are known as False Positives (FP). A False Negative (FN) occurs 

when unsolicited queries are mistakenly identified as normal SQL queries. Recall, also known as 

sensitivity, determines how well the model captures actual SQLi queries. It is defined as the percentage of 

true positives identified out of all actual SQLi queries: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                      (2)  

Precision reflects the proportion of positive identifications that were actually correct. In other 

words, it quantifies how many of the queries flagged as SQLi truly are SQLi: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                (3) 

The F1-Score reflects the harmonic mean of precision and recall, offering a balanced metric. It is 

measures as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                    (4) 

      

5. RESULTS AND DISCUSSION 

5.1. K-Fold Cross-Validation Results  

Table 1 shows the performance of SMA-based classifier when evaluated using 5-fold cross-

validation, measuring accuracy, precision, recall, and F1-score for both training and testing phases. The 

results reveal consistently high performance across all folds, with minimal variation, indicating strong 

model generalization and stability. The average testing accuracy of 98.82% and F1-score of 98.55% 

demonstrate the model’s effectiveness in distinguishing between legitimate and malicious SQL queries. 

The high recall value of 99.65% highlights the classifier’s ability to detect nearly all attack instances, 

thereby minimizing false negatives. Similarly, a precision of 97.49% confirms that the majority of 

detected attacks were correctly identified, reducing false alarms and ensuring reliability in detection 

outcomes. Furthermore, the very low Standard Deviations (SD) across all metrics (≤ ±0.15) indicate 

consistent performance across the folds, signifying that the model is not overfitting and can maintain 

strong predictive capability on unseen data. The close alignment between training and testing results 

further supports the model’s excellent generalization ability and robustness. Overall, these results confirm 

the effectiveness of the SMA-based classifier as a reliable and adaptive bio-inspired approach for 

detecting SQLi attacks in dynamic web environments. 

 

 

 

Table 1. K-Fold Cross-Validation Results (%) 
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Folds 
Training Testing 

Accuracy Precision Recall  F1-score  Accuracy Precision Recall F1-score  

1 98.91 97.68 99.66 98.66 98.93 97.75 99.67 98.70 

2 98.88 97.73 99.54 98.63 98.76 97.35 99.59 98.46 

3 98.79 97.52 99.55 98.50 98.75 97.52 99.49 98.49 

4 98.73 97.18 99.75 98.45 98.85 97.48 99.73 98.59 

5 98.86 97.51 99.73 98.61 98.82 97.34 99.74 98.53 

AVG 98.83 97.51 99.65 98.57 98.82 97.49 99.65 98.55 

SD ± 0.07 ± 0.19 ± 0.09 ± 0.08 ± 0.07 ± 0.15 ± 0.10 ± 0.09 

 

   As the one of executing time (test time) is an important metric for our approach, this timely executed 

will influence on effectively and efficiency in testing process. Figure (6) shows the SMA model has a test 

time of 0.0086 ± 0.0057 seconds This test time efficiency is important for facilitating faster model 

iterations, identifying performance issues more quickly. 

 

 
Figure (6) Testing Time for the Proposed Approach. 

5.2. Performance on Detecting Zero-Day Attacks 

To evaluate the model’s ability to detect previously unseen or zero-day attacks, we tested it against 

a set of samples excluded from the training data. The SMA classifier was able to successfully generalize 

and detect patterns indicative of zero-day behaviours. The SMA-based System demonstrated superior 

detection capabilities, particularly in identifying zero-day attacks that deviate from known patterns. The 

experimental results reveal promising detection rates across all attack types: 89.33% for Out-of-Band-

based SQLi, 97.89% for Boolean-based SQLi, 90.27% for Time-based SQLi, and 96.69% for Union-

based SQLi and 91.51%for Error-based SQLi. These findings underline the effectiveness of SMA in 

generalizing beyond seen data, a critical advantage in dynamic environments as shown figure (7). 
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 Figure (7) Performance on Detecting Zero-Day Attacks 

5.3. Feature Importance  

       The proposed approach deployed SMA algorithm to effectively choose and compute the precise 

predictors for detecting SQLi attacks via extracted features. However, SMA model not only utilised the 

best feature but also supplied importance scores that demonstrate the influence of every individual feature 

on the classification performance. To evaluate the stabilities of the used features, their importance score, 

and SD are calculated over each fold of cross-validation. These results showed that a certain number of 

features were highly important with low SD, indicating their high and consistent impact in the 

classification process. Figure 8 demonstrates the feature importance scores with their corresponding SD 

extracted from SMA model. It shows that uppercase_count, query_length, and contains_delete are the 

most influential features, contributing significantly more to the model’s performance than the remaining 

attributes. 
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Figure (8) Feature Importance with Standard Deviation calculated using SMA and 5 -Fold Cross-Validation 

 5.5. Comparing the Results with the Most Advanced Studies 

The efficacy of the suggested method was evaluated against contemporary research on SQLi 

detection, using current works for this assessment. Table (2) shows that the suggested method performed 

better compared to state-of-the-art techniques, with an accuracy of 98.83%. 

Table (2) Achieved Results compared with recent studies on detecting SQLi Attacks. 

Ref no. Algorithm Year Dataset size Accuracy F1-score 

Maha et al. [13] RNN 2023 30,907 94 92 

Jarudat et al. [15] GA+GB 2023 2,300 95 94 

M. Shahbaz et al. [14] CNN 2024 109,520 98.16 98.06 

Cumi-Guzman et al. [11] RF  2024  22,931 97.3 97.2 

Rosca et al. [12] Ensemble 2025 90,000 96.86 96.77 

Proposed System  SMA  2025 64,172 98.82 98.55 

 

6. CONCLUSION AND FUTURE WORKS 

     In this research, we show the implementation of the Slime Mould algorithm to ensure a safe web 

environment. we introduce a unique solution for identifying zero-day attacks using the Slime Mould 

Algorithm as the classifier instead of its traditional usage as an optimization technique. SMA is quickly 

adaptable to complex and dynamic cybersecurity data making it agile to identify new patterns associated 

with zero-day. 

      The future work plans to enhance the dimension of the research to involve more SQLi attacks 

including a second order injection, cookie injection, etc., as well as others web attacks especially Cross-

Site Scripting, Cross-Site Request Forgery and command injection - also malicious attacks in mobile 

devices and IOT contexts. Next to apply the algorithm to other branch of cybersecurity 
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