

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

84

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

A Bio-Inspired Algorithm for Zero-Day SQL Injection Detection via Slime Mould

Classifier

1Ahmed Ibrahim Abdulameer *, 1Hasanen Alyasiri

Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Najaf, Iraq

ahmedi.altufaily@student.uokufa.edu.iq

https://doi.org/10.46649/fjiece.v4.2.7a.23.9.2025

Abstract. With the continuous development of the cybersecurity field, detecting unknown or zero-

day attacks remains a significant challenge due to their unpredictable behavior. This paper proposes a

novel biologically inspired approach to detecting unknown SQL Injection (SQLi) attacks using the Slime

Mould Algorithm (SMA). This method leverages the adaptive and heuristic capabilities of the SMA to

detect unknown attacks. A binary classification model was developed and trained on a benchmark dataset

containing both natural queries and diverse SQLi attack vectors, including Out-of-Band, Boolean-based,

Time-based, and Union-based injections. To ensure robustness and generalization, K-Fold cross-

validation was employed. The SMA-based model demonstrated superior detection capabilities,

particularly in identifying zero-day attacks that deviate from known patterns. The experimental results

reveal promising detection rates across all attack types: 89.33% for Out-of-Band-based SQLi, 97.89% for

Boolean-based SQLi, 90.27% for Time-based SQLi, and 96.69% for Union-based SQLi, and 91.51% for

Error-based SQLi. These results underline the effectiveness of SMA in generalizing beyond seen data, a

critical advantage in dynamic threat environments. Compared to traditional machine learning models, the

SMA-based classifier achieved higher accuracy and F1 scores, confirming its potential as a powerful tool

for web application security.

Keywords: Slime Mould Algorithm, Zero-Day Attack, SQL Injection, Web Security

1. INTRODUCTION

Cybersecurity has become a critical concern with the rapid development of web-based

technologies. Among the most dangerous threats are zero-day attacks, which exploit previously unknown

vulnerabilities. Many web applications collect users' personal information and interact with users. So,

they always connect to the database. Due to the large amount of valuable data stored in the database, it

naturally becomes the target of attackers, so there are more and more SQLi attacks [1]. SQLi is a type of

web attack that exploits a database query vulnerability to access and manipulate sensitive and important

data [2]. A recent security report highlighted that 6.7% of all vulnerabilities discovered in open-source

projects in 2024 are SQLi vulnerabilities, while 10% of vulnerabilities in closed-source projects were

SQLi-related [3]. Despite improvements, the total number of SQLi vulnerabilities found in open-source

projects is expected to increase from 2,264 in 2023 to over 2,400 by the end of 2024 [3]. According to the

Web Attack Trend Report, SQLi remains one of the most common types of web attacks where it

accounting for 37.36% of all detected web attacks during the monitored period. These figures underscore

the persistent threat posed by SQLi and the urgent need for intrusion detection systems capable of

accurately detecting and mitigating these attacks in real-time [4].

mailto:ahmedi.altufaily@student.uokufa.edu.iq
https://doi.org/10.46649/fjiece.v4.2.7a.23.9.2025

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

85

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

SQLi attack refers to the construction of special strings as parameters to be transmitted to web

applications by submitting web forms or inputting query strings of domain names or page requests. These

special strings often contain some executable statements in the SQL grammar, which make web

applications mistake data as code to execute and ultimately deceive servers to execute malicious SQL

commands. The main reason is that the web application does not filter the users' input data accurately, so

the database is invaded. Existing methods for identifying SQLi attacks include regular matching [1].

Various detection and prevention techniques, such as stored procedures, input validation, whitelisting,

parameterized queries, and Artificial Intelligence (AI), have been proposed to tackle SQLi threats [6][7].

AI techniques have been successfully applied to develop intelligent defense mechanisms across diverse

domains, such as network security [8], mitigation of cross-site scripting attacks [9], and safeguarding

mobile platforms [10]. Furthermore, machine learning (ML) methods have been tested and utilized to

detect SQLi attacks, and the results are promising [6]. Bio-inspired algorithms, a subset of ML techniques,

have been successfully employed to address optimization challenges across diverse domains, including

cybersecurity [6].

In this paper, a bio-inspired algorithm named Slime Mould Algorithm (SMA) is used. This

algorithm was introduced in 2020 [4]. SMA mimics the foraging behavior of Physarum polycephalum, a

slime mould known for its efficient network formation. The algorithm mimics the organism's oscillation-

based search mechanism, where virtual "slime agents" explore the solution space by dynamically

adjusting their locations based on food quality (fitness). High-quality solutions draw more slime agents to

them, leading to more focused searching in that area, while poorer solutions cause the agents to spread out

and search more widely to keep moving forward. SMA balances exploration and exploitation through

adaptive weight updates and stochastic components, mimicking the Mould's natural feedback system.

SMA is known for optimization but has not been explored for classification. To our knowledge, this is the

first time it has been used as a classifier. Our main contribution is to train SMA to detect zero-day attacks.

However, most existing ML- and DL-based detection systems rely on static or signature-dependent

models, which fail to identify novel or zero-day SQL injection patterns. Therefore, this study aims to

develop a bio-inspired intrusion detection model based on the SMA that can dynamically adapt to unseen

SQLi behaviors. The research addresses the gap in zero-day attack detection by leveraging the SMA’s

adaptive exploration–exploitation mechanism to enhance detection accuracy and robustness.

This research details: Section 1 provides an introduction, while Section 2 describes related work.

Section 3 defines SQLi and discusses its types. Section 4 explains the algorithm used in this research,

detailing the dataset, feature extraction, and performance metrics. Section 5 presents the results for

detecting unknown attacks and compares them with recent research on detecting unknown attacks. Section

6 presents the research conclusions and future directions.

2. RELATED WORK

 Detecting zero-day attacks remains a significant challenge due to the evolving nature of cyber

threats and the limitations of signature-based systems. Several researchers have explored intelligent and

adaptive solutions

Cumi-Guzman et al. [11] developed a Random Forest-based classification model for detecting

SQL Injection (SQLi) attacks, achieving a notable accuracy of 97.3%. The model was trained on a curated

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

86

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

dataset of 22,931 SQL statements using 82 syntactic and semantic features. While the classifier

demonstrated strong generalization and interpretability, especially in identifying critical SQL elements

linked to malicious activity, it showed vulnerability to overfitting due to the high dimensionality of the

feature space.

Rosca et al. [12] proposed a ML architecture for SQLi attack detection that integrates syntactic

normalization with semantic feature extraction. The integration allows for a more accurate attack

detection. The study involved Azure ML Studio for 15 models and sampling combinations on a 90,000

SQL queries dataset, which consisted of normal and malicious queries. The Voting Ensemble, which is

the most accurate model of their study, achieved excellent results, with 96.86% overall accuracy, a

weighted F1-score of 96.77%, and a weighted AUC of 98.25%, demonstrating impressive classification

proficiency. Ablation analysis showed that the feature named query_length was a necessary condition for

the model to work, as system accuracy dropped to around 80.54% without it. Their results effectively

argue the SQLi detection attack reliability of their lightweight interpretive feature.

Maha et al. [13] the author proposes an architecture for detecting SQLi attacks using a recurrent

neural network (RNN) auto encoder model. The experimental results show that the proposed approach

achieved an accuracy of 94% and an F1-score of 92%, outperforming various other machine learning

models like ANN, CNN, DT, NB, SVM, RF, and LR

 M. Shahbaz et al. [14] used a CNN-based model achieving 98.16% accuracy, but their research

lacks comparisons with other deep learning models, and deep learning models require large computational

resources, making them unsuitable for limited computational resources.

Jarudat et al. [15], four distinct machine learning techniques, namely gradient boosting (GB),

MLP, LR, and k-nearest neighbor (KNN), were used to improve model performance and identify the most

effective configuration. The tree-based pipeline optimizer (TPOT) and genetic algorithm (GA) were used.

The dataset provided by the Canadian Institute 2023, which includes various types of attacks, served as

the basis for testing the model. Notably, the accuracy values achieved by GB for precision, recall, and F1

score were 95%, 94%, and 95%, respectively.

Lu and Traore [16] were among the early pioneers to apply Genetic Programming (GP) for

intrusion detection, successfully evolving rules to identify previously unseen variants of DoS attacks in

the DARPA 1999 dataset.

Blasco et al. [17] guided the GP evolution process using advanced IDS evaluation metrics,

enhancing its effectiveness in zero-day detection.

Alyasiri et al. [8] evaluated three evolutionary computing techniques, namely GP, GE, and CGP to

detect known and unknown cyberattacks for web and network attacks. By removing specific attack types

from the training phase, their system simulated zero-day scenarios and demonstrated strong

generalization, with CGP achieving the highest detection rate for unknown attacks. These results confirm

the effectiveness of evolutionary models in identifying previously unseen threats across multiple datasets..

Waheed and Alyasiri [18] proposed an evolutionary learning-based method for Android malware

detection using the evtree algorithm. Their model was trained and tested on the CICMalDroid2020

dataset, achieving 99.11% detection accuracy, 96.14% precision, and an F1-score of 97.60%. The results

showed strong performance in identifying unknown malware excluded from training, validating its

suitability for detecting zero-day threats.

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

87

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Kamarudin et al. [19] proposed a hybrid intrusion detection system using LogitBoost combined

with Random Forest to identify both known and unknown web attacks. The system was evaluated using

the NSL-KDD and UNSW-NB15 datasets, achieving an accuracy in detecting new attack patterns. The

model’s ability to identify anomalies and zero-day attacks was validated by high precision and recall rates

on the test datasets.

In contrast to previously mentioned works, this study introduces SMA as a nature-inspired

optimization technique for detecting unknown SQL injection attacks. Using the SMA, the proposed

system improves the decision boundary and enhances the detection accuracy of previously undetected

threats. Experimental results confirm the model's ability to generalize effectively, outperforming many

existing approaches.

3. BACKGROUND ON SQL INJECTION ATTACKS AND TYPES

Web-based applications typically adhere to a three-tier architecture: a presentation tier for the user

interface, a business tier for logical operations, and a data tier for data management. It retains all the

structured data. A SQLi attack capitalizes on weaknesses across all three tiers of a system to execute a

successful breach [20]. Malicious SQL instructions, delivered from the presentation layer to the business

tier, alter existing SQL queries, leveraging the database tier to access resources. The lack of validation at

both the presentation and operational tiers of web applications facilitates a successful SQLi attack [21].

Figure (1) SQLi Attack Workflow

3.1. Types of SQL Injection

SQLi can be employed in several ways to induce significant issues. Through the utilization of

SQLi, a malicious individual could circumvent the authentication process, get unauthorized entry, and

manipulate, and eradicate data stored within a database. SQLi can, in certain instances, facilitate the

execution of commands on the operating system, hence enabling an attacker to possibly escalate to more

destructive operations within a system. The backend network is protected by a firewall. SQL Injection can

be categorized into three primary classifications -In-band SQLi, Inferential SQLi Additionally, there is a

type of SQL injection called Out-of-band SQLi [22].

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

88

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Union-based SQLi is a method of SQLi that exploits the UNION SQL operator to merge the

outcomes of many SELECT statements into one result, which is subsequently included in the HTTP

response [23].

The term blind means that the SQLi is performed when the programmer has set a generic custom

error message in case web application encounters an error [24]. Without displaying error messages,

database vulnerabilities can be protected. The hacker has to deal with a database system that does not

display error messages and as an alternative, hackers submit a series of "TRUE" and "FALSE" queries via

SQL queries [25]. Information about the database will be revealed through the results of these queries.

Time-based SQLi means hackers obtain information on database based on response times. SQL

command is sent to database with code to force the database to wait for a specified amount of time during

the execution of the queries. The response time indicates whether the result of the query is true or false.

While waiting for the query to be processed, the attacker able to execute another query and might inject

malicious code in the query [26].

Blind SQLi refers to a type of SQLi when the attacker does not receive a response from the

targeted program through the same communication channel. Instead, they are able to manipulate the

application to send data to a remote endpoint that they have access over.

Out-of-band SQL injection can occur if the server being used has instructions that can initiate

DNS or HTTP requests. Nevertheless, this applies to all widely used SQL servers [27].

Error-based SQLi is an in-band SQLi technique that relies on error messages thrown by the

database server to obtain information about the structure of the database. In some cases, error-based SQL

injection alone is enough for an attacker to enumerate an entire database. While errors are very useful

during the development phase of a web application, they should be disabled on a live site or logged to a

file with restricted access instead [36].

4. METHODOLOGYS

4.1. Dataset Preparation

 In this study, open-source data was collected from the Kaggle repository. Several scattered data

sets were collected, cleaned, and remove the duplicate. The data for this study came from two main

sources:

1. The SQLi-XSS dataset [28], which contains various data from web attacks, particularly SQLi attacks.

2. The SQL injection dataset [29], which includes both malicious and natural data, making it suitable for

an intrusion detection system.

The data was processed and filtered to ensure accuracy, and the most important features were

extracted, enhancing the system's ability to accurately distinguish between malicious and natural data. A

total of 64,172 queries were collected, classified into two categories: approximately 25,865 normal and

38,307 malicious. A multi-class dataset was created that included four attacks, in addition to normal

queries based on their pattern and methodology of execution. This ensures the system's ability to

effectively predict different types of attacks. The collected dataset included five types of SQLi namely

Boolean-based, Out-of-band, Union-based, Time-based, and Error-based. Each attack type was

categorized accordingly, allowing the dataset to be structured for multi-class classification. Classification

facilitates a more detailed detection approach, enabling the model to distinguish between normal and

malicious queries and classify the specific type of SQLi attack.

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

89

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Figure (2) Dataset Category Distribution

In this study, 26 features were extracted from the dataset to improve the performance of the

classification system. The feature selection process was guided by domain expertise and statistical

analysis to ensure their suitability for the classification task. The selected features covered various aspects

of SQL queries, such as their structure, logical conditions, and the use of special symbols. This helps the

model distinguish between normal and malicious queries. The feature extraction process involved

analysing text, metadata, and linguistic patterns to detect any indication of an SQLi attack. Preprocessing

techniques, such as normalization and feature segmentation, were also used to ensure data consistency and

smooth operation on different datasets. The selected features serve as the primary input for the machine

learning model and help improve classification because they focus on several important aspects of queries.

The selection of these features is consistent with previous studies in cybersecurity and machine learning.

For example, Recio-Garcia et al. [30] emphasized the importance of analyzing keywords and grammatical

patterns, considering features such as “contains contains union”, and “contains location”. Comi-Guzman

et al. [31] showed that even minor changes in query structure affect classification. For this purpose, they

used features such as query length, number of numbers, and ratio of keywords. Tang et al. [32] focused on

the role of special characters in SQL injection detection using neural networks, justifying the use of

features such as “contains a single quote”, “contains a semicolon”, and the proportion of special

characters. Gao et al. [33] analyzed query behaviour, demonstrating the importance of evaluating logical

operators such as “contains AND”, “contains OR”, and “contains Equals” to determine malicious intent.

Overall, the features they chose are based on extensive research and have proven effective in accurately

classifying SQL injection attacks.

4.2. Feature Correlation Matrix

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

90

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

 Feature correlation is one of the basic statistical methods to understand the relationship and

interdependence between features in a dataset. It gives an understanding of the way changes in one

feature may impact or be linked up with changes in another. Correlation analysis is especially important in

the context of security, as it helps identify the most relevant and informative features of the data that

separate normal behaviour from malicious entities. Analysts can identify redundancy in the dataset by

assessing how much features are correlated with each other. Feature correlation analysis was conducted

to identify redundant or highly correlated features within the dataset. As shown in Figure (3), features

such as query_length and word_count showed strong positive correlation, indicating potential redundancy.

On the other hand, features like Query_Entropy and uppercase_count demonstrated low correlation with

others, making them valuable candidates for classification retaining all of them might lead to overfitting

and increased computational complexity, since highly correlated features often convey similar

information. Thus, correlation analysis can help reduce dimensionality by finding and removing

unnecessary features, which in turn enhances the efficacy of machine learning algorithms by streamlining

the features and improving generalization. The correlation matrix is commonly prepared in this analysis,

which shows pairwise correlations for all the features. It aids with selecting features that are highly

correlated to target class and have little correlation among themselves, which is good as input for

predictive models training.

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

91

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Figure (3) Feature Correlation Matrix

4.3 Proposed System

The proposed system introduces an innovative approach to attack detection. It uses SMA

algorithm to accurately detect SQLi attacks. This algorithm is inspired by the behaviour of slime Mould,

which exhibits remarkable problem-solving capabilities when searching for food. In the context of attack

detection, it is used to achieve the following:

1. Search space exploration: The algorithm intelligently searches for optimal solutions between

exploration (Global search) and exploitation (local search).

2. Adaptation to data pattern: The slime Mould algorithm adapts by dynamically adjusting search paths

based on the quality of the solution, making it highly adaptable to different attack patterns

3. Classification boundary optimization: By adjusting its parameters, it can effectively separate different

data classes, such as SQL attacks.

The performance of SMA depends largely on its parameters, which are carefully tuned to achieve

optimal results. These parameters include:

1. Pop_size: This represents the number of solutions in the set. As the object size increases, the diversity

of solutions increases, but it also increases computational complexity. In this system, we used 150 to

balance finding the optimal solution with computational efficiency.

2- epoch: This parameter specifies the maximum number of iterations the algorithm can run. Increasing

the number allows for a more thorough exploration of the search space but increases training time. In this

system, the algorithm was set to run for 1,000 iterations to ensure convergence to the optimal solution.

3- P-t: The exploration-exploitation balance parameter controls the behaviour of the slim Mould

oscillations, balancing exploration and exploitation. A smaller value encourages exploitation, while a

larger value encourages exploration (0.1) was chosen to balance exploration and exploitation [34]

4- Search Space Boundaries (lb and ub):

-These parameters define the lower and upper bounds of the search space.

-The search space is constrained to ensure that the solutions remain within feasible limits.

-In this system, the search space is defined as [-1, 1] for each dimension, ensuring that the weights remain within a

reasonable range.

5- Objective Function:

-The objective function evaluates the fitness of each solution based on classification performance (e.g., F1-score).

- The F1-score retrieval was chosen because the data was unbalanced to find a higher accuracy for the system

The Slime Mould Algorithm (SMA) works through the stages of food search, as it simulates the behaviour

of slime Mould in nature when exploring food resources and exploiting them in an intelligent way, which

helps it find optimal solutions. The figure 4 illustrates the basic steps of the SMA algorithm.

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

92

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Figure (4) Illustrates SMA algorithm steps

In the proposed method, the SMA is optimized to act as an independent classifier, enabling it to

make decisions by analyzing various patterns and solve complex problems arising from the behavior of

SMA in their search for food. This algorithm is based on simulating slime mould movement in the

environment. In the proposed SMA-based classification framework, each candidate solution encodes a

vector of raw scores corresponding to the possible class labels. These scores are passed through the

softmax function to transform them into normalized probability distributions, ensuring comparability

across classes. The predicted class is then determined by selecting the class with the maximum probability

using the argmax operation. A (softmax) activation function was used to convert the results into easily

interpreted probabilities, which in turn convert the outputs into probabilities that reflect the degree of

affiliation enabling the system to perform with high confidence [35].Comparative experiments with

traditional algorithms

show that the

proposed approach

has a better classification performance in intrusion detection system, and can effectively distinguish

between both malicious data and normal data, achieve real-time detection of two types of data while

ensuring scalability and separability in practical applications. This is a methodology that prevent SQLi

attacks. The system architecture we propose includes data gathering, loading into the model, cleaning and

processing, feature preprocessing and extraction, standardization and binary classification. During the

training phase K-stratified cross-validation is used to maintain robustness and generalization capability of

the model. This procedure splits the data into a few folds and trains using some but not all of them,

averages their results while validating on one or more of the other folds, resulting in less overfitting and

greater stability of results.

To simulate a real-world zero-day attack scenario, where the system must detect a new attack

variant it has never encountered before. The instances of a variant of SQLi attacks in the dataset were

removed from the training set and added to the testing set. Then, the best evolved SMA classifier was

tested against the removed SQLi variant. The complete workflow of the proposed SMA classifier

framework is outlined in Algorithm 1 and described in Figure 5.

Algorithm1 : The Proposed System

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

93

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Input: Dataset with Normal and SQLi Query

Output: Best SMA model

1. Start

2. Preprocess the data

 a. Features Extraction

 b. Label Encoder

 c. Standardization

3. Split the data into training and testing sets.

4. Initialize the SMA population (solutions).

5. Score =np.dot (X_Train, SMA Weight.T)

6. Repeat until the maximum number of iterations is reached:

 a. Apply the Softmax function outputs.

 b. Evaluate each solution using the F1-score metric.

 c. Update weights and positions using SMA update equations.

7. Select the best SMA solution.

8. Evaluate the final model on the testing set.

9. Report the performance metrics: Accuracy, Recall, Precision, F1-

score

10. End

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

94

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Figure (5) Architecture of the Proposed SMA-Based method for Detecting SQL Injection and Zero-Day Attack.

4.3. Training and Evaluation

The model was trained and evaluated using an open-source SQLi attack classification dataset.

Preprocessing and feature extraction, including encoding and standardization, were supervised. SMA was

used as a classifier, and a Soft Max activation function transformed the raw system outputs into

probability distributions to ensure the reliability of the results. We evaluated the system using accuracy

metrics, F1 score, and classification report analysis. These metrics provided a comprehensive assessment

of the system's ability to distinguish between malicious and normal queries and detect zero-day attacks.

All experiments were conducted on a Lenovo PC with an Intel Core™ i3-3110M processor. A 2.40 GHz

processor, 12 GB of RAM, and Windows 10 Pro (64-bit, x64) are implemented using Python and leverage

key machine learning and nature-inspired algorithmic libraries, including NumPy, Matplotlib, Pandas,

Scikit-learn, Time, Seaborn, and Mealpy.

One Class Out of Training

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

95

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

4.4. Performance Metrics

The metrics used to evaluate the performance of the proposed system are accuracy, recall,

precision, and F1-score. These classification measures are based on the confusion matrix, serve to

evaluate performance. Accuracy measures the percentage of total queries in a dataset that are correctly

classified by the SMA classifier. It is calculated using the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

In this content, True Positive (TP) shows the count accurately detected as SQLi. When valid

queries are accurately classified as normal, it is called a True Negative (TN). Queries that are not SQLi

but were incorrectly classified as SQLi are known as False Positives (FP). A False Negative (FN) occurs

when unsolicited queries are mistakenly identified as normal SQL queries. Recall, also known as

sensitivity, determines how well the model captures actual SQLi queries. It is defined as the percentage of

true positives identified out of all actual SQLi queries:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

Precision reflects the proportion of positive identifications that were actually correct. In other

words, it quantifies how many of the queries flagged as SQLi truly are SQLi:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3)

The F1-Score reflects the harmonic mean of precision and recall, offering a balanced metric. It is

measures as:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

5. RESULTS AND DISCUSSION

5.1. K-Fold Cross-Validation Results

Table 1 shows the performance of SMA-based classifier when evaluated using 5-fold cross-

validation, measuring accuracy, precision, recall, and F1-score for both training and testing phases. The

results reveal consistently high performance across all folds, with minimal variation, indicating strong

model generalization and stability. The average testing accuracy of 98.82% and F1-score of 98.55%

demonstrate the model’s effectiveness in distinguishing between legitimate and malicious SQL queries.

The high recall value of 99.65% highlights the classifier’s ability to detect nearly all attack instances,

thereby minimizing false negatives. Similarly, a precision of 97.49% confirms that the majority of

detected attacks were correctly identified, reducing false alarms and ensuring reliability in detection

outcomes. Furthermore, the very low Standard Deviations (SD) across all metrics (≤ ±0.15) indicate

consistent performance across the folds, signifying that the model is not overfitting and can maintain

strong predictive capability on unseen data. The close alignment between training and testing results

further supports the model’s excellent generalization ability and robustness. Overall, these results confirm

the effectiveness of the SMA-based classifier as a reliable and adaptive bio-inspired approach for

detecting SQLi attacks in dynamic web environments.

Table 1. K-Fold Cross-Validation Results (%)

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

96

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Folds
Training Testing

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

1 98.91 97.68 99.66 98.66 98.93 97.75 99.67 98.70

2 98.88 97.73 99.54 98.63 98.76 97.35 99.59 98.46

3 98.79 97.52 99.55 98.50 98.75 97.52 99.49 98.49

4 98.73 97.18 99.75 98.45 98.85 97.48 99.73 98.59

5 98.86 97.51 99.73 98.61 98.82 97.34 99.74 98.53

AVG 98.83 97.51 99.65 98.57 98.82 97.49 99.65 98.55

SD ± 0.07 ± 0.19 ± 0.09 ± 0.08 ± 0.07 ± 0.15 ± 0.10 ± 0.09

 As the one of executing time (test time) is an important metric for our approach, this timely executed

will influence on effectively and efficiency in testing process. Figure (6) shows the SMA model has a test

time of 0.0086 ± 0.0057 seconds This test time efficiency is important for facilitating faster model

iterations, identifying performance issues more quickly.

Figure (6) Testing Time for the Proposed Approach.

5.2. Performance on Detecting Zero-Day Attacks

To evaluate the model’s ability to detect previously unseen or zero-day attacks, we tested it against

a set of samples excluded from the training data. The SMA classifier was able to successfully generalize

and detect patterns indicative of zero-day behaviours. The SMA-based System demonstrated superior

detection capabilities, particularly in identifying zero-day attacks that deviate from known patterns. The

experimental results reveal promising detection rates across all attack types: 89.33% for Out-of-Band-

based SQLi, 97.89% for Boolean-based SQLi, 90.27% for Time-based SQLi, and 96.69% for Union-

based SQLi and 91.51%for Error-based SQLi. These findings underline the effectiveness of SMA in

generalizing beyond seen data, a critical advantage in dynamic environments as shown figure (7).

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

97

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

 Figure (7) Performance on Detecting Zero-Day Attacks

5.3. Feature Importance

 The proposed approach deployed SMA algorithm to effectively choose and compute the precise

predictors for detecting SQLi attacks via extracted features. However, SMA model not only utilised the

best feature but also supplied importance scores that demonstrate the influence of every individual feature

on the classification performance. To evaluate the stabilities of the used features, their importance score,

and SD are calculated over each fold of cross-validation. These results showed that a certain number of

features were highly important with low SD, indicating their high and consistent impact in the

classification process. Figure 8 demonstrates the feature importance scores with their corresponding SD

extracted from SMA model. It shows that uppercase_count, query_length, and contains_delete are the

most influential features, contributing significantly more to the model’s performance than the remaining

attributes.

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

98

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Figure (8) Feature Importance with Standard Deviation calculated using SMA and 5 -Fold Cross-Validation

 5.5. Comparing the Results with the Most Advanced Studies

The efficacy of the suggested method was evaluated against contemporary research on SQLi

detection, using current works for this assessment. Table (2) shows that the suggested method performed

better compared to state-of-the-art techniques, with an accuracy of 98.83%.

Table (2) Achieved Results compared with recent studies on detecting SQLi Attacks.

Ref no. Algorithm Year Dataset size Accuracy F1-score

Maha et al. [13] RNN 2023 30,907 94 92

Jarudat et al. [15] GA+GB 2023 2,300 95 94

M. Shahbaz et al. [14] CNN 2024 109,520 98.16 98.06

Cumi-Guzman et al. [11] RF 2024 22,931 97.3 97.2

Rosca et al. [12] Ensemble 2025 90,000 96.86 96.77

Proposed System SMA 2025 64,172 98.82 98.55

6. CONCLUSION AND FUTURE WORKS

 In this research, we show the implementation of the Slime Mould algorithm to ensure a safe web

environment. we introduce a unique solution for identifying zero-day attacks using the Slime Mould

Algorithm as the classifier instead of its traditional usage as an optimization technique. SMA is quickly

adaptable to complex and dynamic cybersecurity data making it agile to identify new patterns associated

with zero-day.

 The future work plans to enhance the dimension of the research to involve more SQLi attacks

including a second order injection, cookie injection, etc., as well as others web attacks especially Cross-

Site Scripting, Cross-Site Request Forgery and command injection - also malicious attacks in mobile

devices and IOT contexts. Next to apply the algorithm to other branch of cybersecurity

REFERENCES

[1] M. Qbea’h, M. Alshraideh, and K. E. Sabri, ‘‘Detecting and preventing SQL injection attacks: A

formal approach,’’ in Proc. Cybersecur. Cyber- forensics Conf. (CCC), Aug. 2016, pp. 123–129.

[2] OWASP, “2024 SQL Injection,” [Online]. Available:

https://owasp.org/wwwcommunity/attacks/SQL_Injection. [Accessed: Jan. 01, 2025].

[3] Aikido Security, “SQL Injection Vulnerability Report,” 2024. [Online]. Available:

https://www.aikidosec.com/blog/sql-injection-vulnerabilities-2024. [Accessed: Jan. 01, 2025].

[4] AIONCLOUD, “2025 Web Attack Trend Report,” Feb. 2025. [Online]. Available:

https://www.aioncloud.com/2025-02-web-attack-trend-report/

[5] Y. Wei, Z. Othman, K. M. Daud, Q. Luo, and Y. Zhou, "Advances in Slime Mould Algorithm: A

Comprehensive Survey," Biomimetics, vol. 9, no. 1, p. 31, Jan. 2024.

[6] Z. H. Al-Araji, “A Survey on Bio-Inspired Algorithm for SQL Injection Attacks: Survey on Bio-

Inspired Algorithm for SQL Injection Attacks”, J. Basrah Res. (Sci.), vol. 50, no. 1, p. 340, Jun.

2024

[7] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Detection of SQL Injection Attack Using Machine

Learning Techniques: A Systematic Literature Review,” Journal of Cybersecurity and Privacy, vol.

2, no. 4, pp. 764–777, 2022. doi: 10.3390/jcp2040039.

[8] H. Alyasiri, J. A. Clark, and D. Kudenko, “Evolutionary computation algorithms for detecting known

and unknown attacks,” in Innovative Security Solutions for Information Technology and

https://owasp.org/wwwcommunity/attacks/SQL_Injection
https://www.aikidosec.com/blog/sql-injection-vulnerabilities-2024
https://www.aioncloud.com/2025-02-web-attack-trend-report/

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

99

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

Communications: 11th International Conference, SecITC 2018, Bucharest, Romania, November 8–

9, 2018, Revised Selected Papers 11, Springer, 2019, pp. 170–184

[9] H. Alyasiri, Evolving Rules for Detecting Cross-Site Scripting Attacks Using Genetic Programming,

vol. 1347. Springer Singapore, 2021. doi: 10.1007/978-981-33-6835-4_42.

[10] Z. Z. Jundi and H. Alyasiri, “Android Malware Detection Based on Grammatical Evaluation

Algorithm and XGBoost,” in 2023 Al-Sadiq International Conference on Communication and

Information Technology (AICCIT), IEEE, 2023, pp. 70–75

[11] F. K. Alarfaj and N. A. Khan, “Enhancing the Performance of SQL Injection Attack Detection

through Probabilistic Neural Networks,” Appl. Sci., vol. 13, no. 7, 2023, doi: 10.3390/app13074365.

[12] Rosca, C.-M.; Stancu, A.; Popescu, C. Machine Learning Models for SQL Injection Detection.

Electronics 2025, 14, 3420. https://doi.org/10.3390/electronics14173420.

 [13] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Deep learning architecture for detecting

SQLinjection attacks based on RNN autoencoder model,” Mathematics, vol. 11, no. 15, p. 3286,

2023.

[14] M. Shahbaz, G. Mumtaz, S. Zubair, and M. Rehman, “Evaluating CNN Effectiveness in SQL

Injection Attack Detection,” Journal of Computing & Biomedical Informatics, vol. 7, no. 2, 2024.

DOI: 10.56979/702/2024.

[15] Jarudat, et al. (2023). Genetic Algorithm-Based Model for SQL Injection Detection Using TPOT and

GB Optimization. Journal of Applied Security Research.

[16] W. Lu and I. Traore, "Detecting new forms of network intrusion using genetic programming,"

Computational Intelligence, vol. 20, no. 3, pp. 475–494, 2004. doi: 10.1111/j.1467-

8640.2004.00241.x.

 [17] J. Blasco, A. Orfila, and A. Ribagorda, "Improving network intrusion detection by means of domain-

aware genetic programming," in *Proc. Int. Conf. on Availability, Reliability and Security

(ARES)*, IEEE, pp. 327–332, 2010.

 [18] W. F. Waheed and H. Alyasiri, "Evolving trees for detecting android malware using evolutionary

learning," *Int. J. Nonlinear Anal. Appl.*, vol. 14, no. 1, pp. 753–761, 2023. doi:

10.22075/ijnaa.2022.6874.

[19] M. H. Kamarudin, A. A. Aziz, and A. Selamat, "A LogitBoost-based algorithm for detecting known

and unknown web attacks," *IEEE Access*, vol. 5, pp. 26190–26203, 2017.

[20] Y. Wimukthi, H. R. Sri, H. Kottegoda, D. Andaraweera, and P. Palihena, “A comprehensive review

of methods for SQL injection attack detection and prevention SEE PROFILE A comprehensive

review of methods for SQL injection attack detection and prevention,” no. October, pp. 1–

10,2022,[Online]. Available: https://www.researchgate.net/publication/364935556

[21] M. Nasereddin, A. Alkhamaiseh, M. Qasaimeh, and R. Al-, “A systematic review of detection and

prevention techniques of SQL injection A systematic review of detection and prevention techniques

of SQL injection attacks,” Inf. Secur. J. A Glob. Perspect., vol. 00, no. 00, pp. 1–14, 2021, doi:

10.1080/19393555.2021.1995537.

[22] T. Pattewar, H. Patil, H. Patil, N. Patil, M. Taneja, and T. Wadile, “Detection of SQL injection using

machine learning: a survey,” Int. Res. J. Eng. Technol.(IRJET), vol. 6, no. 11, pp. 239–246, 2019.

[23] P. Suri, “DATA PROTECTION : SQL INJECTION PREVENTION,” no. 01, pp. 2716–2732, 2024.

[24] M.Amirulluqman Azman, Mohd Fadzli Marhusin and Rossilawati Sulaiman, ―Machine Learning-

Based Technique to Detect SQL Injection Attack‖, Journal of Computer Science, 17 (3), 2021,

pp.296-303

[25] J.Minhas and Kumar Raman, ―Blocking of SQL Injection Attacks by Comparing Static and

Dynamic Queries‖, International Journal of Computer Network and Information Security; 5(2), Feb

2013, pp.1-9.

https://www.researchgate.net/publication/364935556

A

T
U

-F
JI

E
C

E
,

V
o

lu
m

e:
 4

,
Is

su
e:

 2
,

S
ep

te
m

b
er

,
2

3
,
2

0
2
5
,

©
 2

0
2

0
 F

JI
E

C
E

,
A

ll
 R

ig
h

ts
 R

es
er

v
ed

100

Al-Furat Journal of Innovations in Electronics and Computer

Engineering (FJIECE)

ISSN -2708-3985

[26] M.Amin Mohd Yunus, Muhammad Zainulariff Brohan and Nazri Mohd Nawi. ―Review of SQL

Injection: Problems and Prevention‖. International Journal On Informatics Visualization, vol 2,

2018, No 3 –2

[27] I. Muscat, “SQLi part 6: Out-of-band SQLi,” November 16, 2015. Accessed: Mar. 01, 2025.

[Online]. Available: https://www.acunetix.com/blog/articles/sqli-part-6-out-of-band-sqli/

[28] A.Trinity,“SQLIandXSSDataset,”Kaggle,[Online]. Available:

https://www.kaggle.com/datasets/alextrinity/sqli-xss-dataset [Accessed: Jan. 01, 2025].

[29]S.S.Hussain,“SQLInjectionDataset,”Kaggle,[Online]. Available:

https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset [Accessed: Jan. 01,

2025].

[30] Recio-García, J. A., Orozco-del-Castillo, M. G., & Soladrero, J. A. (2023). Case-based explanation of

classification models for the detection of SQL injection attacks.

[31] Cumi-Guzman, B. A., Espinosa-Chim, A. D., Orozco-del-Castillo, M. G., & Recio-García, J. A.

(2024). Counterfactual Explanation of a Classification Model for Detecting SQL Injection Attacks.

[32] Tang, P., Qiu, W., Huang, Z., Lian, H., & Liu, G. (2020). Detection of SQL injection based on

artificial neural networks.

 [33] Gao, H., Zhu, J., Liu, L., Xu, J., Wu, Y., & Liu, A. (2019). Detecting SQL Injection Attacks Using

Grammar Pattern Recognition and Access Behavior Mining.

[34] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, "Slime mould algorithm:

A new method for stochastic optimization," Future Generation Computer Systems, vol. 111, pp.

300-323, Oct. 2020. [Online]. Available: https://doi.org/10.1016/j.future.2020.03.055

[35] M. Abadi et al., "Deep learning with differential privacy," in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security (CCS '16), Vienna, Austria, Oct. 2016, pp.

308-318. [Online]. Available: https://doi.org/10.1145/2976749.2978318

 [36] P. Kumar and R. K. Pateriya, “A Survey on SQL Injection Attacks, Detection and Prevention

Techniques,” no. July, 2012.

https://www.acunetix.com/blog/articles/sqli-part-6-out-of-band-sqli/
https://www.kaggle.com/datasets/alextrinity/sqli-xss-dataset
https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1145/2976749.2978318

