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              Abstract. Noise is undesired information in an image that appears during image capturing, 

transmission, coding, and processing steps, negatively impacting visual quality and obscuring important 

details. Image denoising is therefore a central problem in both image processing and computer vision, 

aiming to suppress such distortions while preserving essential structural information. Our paper aims to 

shed light on recent research in image denoising techniques, evaluate the performance of prominent 

methods, highlight research gaps, and identify areas for further study. 
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1. INTRODUCTION  

 

Digital image plays a vital role in various applications. Due to various influences, including 

transmission channels and environmental factors, images are inevitably corrupted by noise during 

capture, compression, or transmission, resulting in degradation and loss of informative image details. 

The essential image processing tasks are negatively impacted by noise. Image denoising is necessary to 

recover a clean image from a noisy one without compromising image details. Image denoising is a 

technique used to overcome image problems, such as signal distortion and unwanted noise, for authentic 

image restoration. In fact, image denoising is an increasingly important issue and still an open task; 

researchers have proposed numerous approaches to effectively remove noise while preserving image 

information. It is widely acknowledged that image sharpness details and noise are high-frequency 

components, which are difficult to recognize in the image denoising process; therefore, some details are 

inevitably lost during the denoising process.  

 

 

2. TYPES OF NOISE IN IMAGES 

 

Many types of noise can adversely affect the images. These noises can arise from various sources. 

In general, noise can be categorized into additive noise sources, which are associated with image capturing 

devices, invalid memory addresses, or shortcomings of image capturing devices, such as cameras, 

misaligned lenses, poor focal length, scattering, multiplicative noise, and impulse noise. The impulse noise, 

in turn, is classified into dynamic (random) and static noise, which tend to modify pixel values randomly 

[1]. Noise removal from the image is a complicated process without Initial knowledge of a noise model. 

Therefore, pre-defining noise models is essential in applying the image denoising techniques 
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2.1. GAUSSIAN NOISE: 

 

 This type of noise follows a Gaussian distribution. The primary source of Gaussian noise manifests 

during acquisition of the image, such as Sensor Noise Presented by low illumination or high temperature 

values, and electronic circuit noise. It is generally either additive or multiplicative, and it concerns only 

zero-mean additive noise. The key aspect of a Gaussian distribution is calculating the mean of a random 

variable for a stationary Gaussian; there is no better than a linear average. This is why Gaussian noise is the 

worst scenario for nonlinear filters in image restoration, as the linear filter's enhancement is least effective 

for Gaussian noise. At each point, Gaussian noise is independent of pixel value intensity [2]. Equation (1) 

and Figure (1) illustrate the PDF of Gaussian noise. It is likewise known as random variation, impulsive 

noise, or enhancer noise (6). 

 

 𝐹(𝑔) =
1

√2𝜋𝜎2
 
−(𝑔−𝜇)

2𝜎2

2
                                    (1)  

                                     

Where F(g)= Gaussian distribution noise in the noisy image, σ is the standard deviation, and µ is the 

mean value. 

 
Fig. 1. PDF of Gaussian Noise. 

 

 

2.2. SALT AND PEPPER NOISE (IMPULSE NOISE) 

 

 

 This model of noise appears when the image signal rapidly and suddenly changes, and may be 

caused by malfunctions and shortcomings of the imaging device, timing errors during the digitization 

process, etc. Salt and Pepper noise represented by black and white pixels. Salt and pepper noise, also known 

as data drop noise, occurs when there is a change in pixel values. However, salt and pepper noise partially 

corrupted the image by either increasing or decreasing the minimum or maximum pixel value [2]. This noise 

can have a minimum (0) or a maximum (255) value. For salt noise, the values are close to 255, and for 

pepper noise, they are close to 0. The intensity values typically fall at either the minimum or maximum 

levels.[3]  

 

Ƞ(𝑥, 𝑦) =  {
0,   𝑃𝑒𝑝𝑝𝑒𝑟 𝑛𝑜𝑖𝑠𝑒 
255,     𝑆𝑎𝑙𝑡 𝑛𝑜𝑖𝑠𝑒

}                       (2)      
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The PDF of Salt and Pepper noise is represented by: 

       

 𝑝(𝑧) = {
𝑝𝑎 𝐹𝑜𝑟 𝑧 = 𝑎
𝑝𝑏 𝐹𝑜𝑟 𝑧 = 𝑏
0 𝑜𝑡ℎ𝑒𝑟𝑠

                              (3) 

 

Where P (z) represents the Probability density function, and z is the random variable that represents 

noise. 

 
 

                                     Fig. 2. PDF of Salt and Pepper Noise. 

 

2.3. SPECKLE NOISE 

 

Speckle noise is multiplicative in nature. This type of noise arises in imaging systems that involve 

laser systems, Synthetic Aperture Radar (SAR) imagery, and ultrasound images. The source of this noise is 

attributed to random interference between the coherent returns. The source of this noise is the random 

overlap of coherent returns. Speckle noise follows a gamma distribution as illustrated in Figure 3. Its 

probability density function is subjected to a gamma distribution.[4] 

 

                  𝐹(𝑔) =
𝑔𝑎−1

(𝑎−1)!𝑎𝑎 𝑒
−𝑔

𝑎                                 (4) 

 

 
Fig. 3. PDF of Speckle Noise. 
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2.4. POISSON NOISE (PHOTON NOISE) 

 

 

This model of noise appears due to the statistical nature of electromagnetic waves like visible light, 

X-rays, and gamma rays. In gamma-ray imaging systems and medical X-ray imaging, these rays are emitted 

from their source and injected into the patient's body. The ray’s sources are having random photon 

variations. The result gathered image demonstrates spatial and temporal fluctuations. Poisson noise is also 

called shot noise or quantum noise. This noise undergoes the Poisson distribution [5], which is given as: 

 

     𝑝(𝑓(𝑝𝑖) = 𝑘) =
𝜆 𝑘𝑖𝑒−𝜆 

𝑘!
                                    (5) 

Where 𝜆 is the mean and k = 0,1,2,… 

 
               Fig. 4. PDF of Poisson Noise. 

 

2.5. STRUCTURED NOISE 

 

 

Structured noise is periodic and aperiodic in nature. The electronic components' interferences cause 

such noise; communication channel noise exists in two forms: structured noise and unstructured noise.  

Structured noise is also referred to as low-rank noise. It is more beneficial to leverage a noise model defined 

in a lower-dimensional space for signal processing. In a physical system, this noise model is transformed 

into a full score measurement space. In measurement space, we can be sure that the resulting low-rank noise 

displays a physical system-based structure. The structured noise model is expressed in Equations (6) and 

(7), respectively [5].  

 

                   𝑦(𝑛) = 𝑥(𝑛,𝑚) + 𝑣(𝑛)                                            (6)   

 

                    𝑦(𝑛) = 𝐻(𝑛,𝑚) ∗ 𝜃(𝑚) + 𝑠(𝑛,𝑡) ∗ Ø(𝑛)   + 𝑣(𝑛)                 (7) 

 

Where y represent the received image, n = rows, m = columns, H represent Transfer function of 

linear system, S indicates the Subspace, t is the rank in subspace, φ signifies the underlying process which 

exciting the linear system (S), θ indicates the signal parameter excites or sets initial conditions, linear system 

H is used to generate original signal x relative to n vector random noise (v(n ))[6].  The figure displays the 

image after applying the Structured noise. 
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           Fig. 5. Structured Noise. 

 

2.6. QUANTIZATION NOISE 

 

 

It’s also called Uniform noise. Where the detected image pixels are mapped into discrete levels, the 

distribution is characterized by uniformity, as illustrated in Figure 6. 

 

                  𝑝(𝑧) =  {
1

𝑏−𝑎  
            𝑖𝑓 𝑎 ≤ 𝑧 ≤ 𝑏

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
}                 (8) 

 

Where the z̅ Represent the mean of the density function, given by z̅  =
(a+b)

2
  and its variance 

presented by  𝑧̅  =
(𝑎+𝑏)

2
 . 

 
Fig. 6. PDF of Quantization Noise. 

 

2.7. BROWN NOISE (FRACTAL NOISE)  

 

It’s known as Brownian noise; in a sound signal, it changes momentarily in a random manner. Brown 

noise is an integration of multiple types of noise involving white noise, blue noise, and pink noise. Brown 

noise energy is concentrated in the low frequencies. it's somewhat similar to red light, having a low 

frequency[7]. Statistically, fractional Brownian noise is referred to as fractal noise. The fractal noise is 

caused by natural processes. It is different from the Gaussian process. In mathematical terms, the motion of 

fractional Brownian motion can be represented as a zero-mean Gaussian process (BH) as demonstrated by 

Equations (9) and (10), respectively. [2] 
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                  BH (0) = 0                                              (9)      

                                                                                    

                  E {|𝐵𝐻(𝑡) − 𝐵𝐻(𝑡−∆)|
2

} = 𝜎2 |∆|2𝐻                   (10)                                           

 

 

2.8. PERIODIC NOISE  

 

 

This model of noise is caused by electronic interference. A spatial dependency and sinusoidal pattern 

are specific characteristics of periodic noise, which display in the frequency domain as conjugate spots. It 

can be denoised by applying a notch filter or narrow-band reject filter [5]. 

 

 
Fig. 7. Periodic Noise. 

2.9. GAMMA NOISE 

 

 

In general, Gamma Noise appears in the laser-based images. Gamma Noise is also called Erlang 

noise. It follows the Gamma distribution [8].  

 

                   𝑓(𝑥) =  {
𝑎𝑥𝑧𝑏−1

(𝑏−1)!
 𝑒−𝑎𝑧        𝑓𝑜𝑟 𝑧 < 0

0                        𝑓𝑜𝑟 𝑧 ≥ 0
              (11) 

                                           

 
Fig. 8.  PDF of Gamma Noise. 
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2.10. RAYLEIGH NOISE   

 

 

Rayleigh noise is present in radar range images; the PDF is given as [5]. 

 

       𝑝(𝑧) = {
2

𝑏
 (𝑧 − 𝑎)𝑒

−(𝑧−𝑎)2

𝑏  𝑓𝑜𝑟 𝑧 ≥ 𝑎

0                                𝑓𝑜𝑟 𝑧 < 𝑎
             (12) 

  

Where variance 𝜎2 =  
𝑏(4−𝜋)

4
     and    mean 𝜇 = 𝑎 +  √

𝜋𝑏

4
 

 

 
Fig. 9.  PDF of Rayleigh Noise. 

 

 

3. IMAGE DENOISING TECHNIQUES 

  

A considerable amount of literature has been published on image Denoising utilizing various 

techniques, ranging from traditional approaches such as Wiener filters and median filters, to advanced 

approaches like Block-Matching 3D Filtering (BM3D), and wavelet-based thresholding. In the present era, 

deep learning techniques, which involve Generative Adversarial Networks (GANs) and Convolutional 

Neural Networks (CNNs), have exhibited remarkable success in addressing complex patterns of noise and 

achieving high-quality results across diverse noise levels. The image denoising system is illustrated in 

Figure 10. 

 

 
Fig.10.  Image Denoising System. 
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3.1. IMAGE DE-NOISING-BASED FILTERING 

 

Filtering is a method in image processing used for various tasks, such as noise reduction, resampling, 

interpolation, and edge detection. In denoising tasks, the filtering methods focus on assessing and detecting 

noisy pixels quickly and removing them. The filter selection is based on the amount and type of noise that 

exists in an image. The filters can be classified into three classes: linear filters, nonlinear filters, and adaptive 

filters.[9] 

 

 

3.1.1. LINEAR FILTER 

 

It is homogeneously applied to the entire image. Sometimes this blurs image detail, such as sharp 

edges and lines. A linear filter alone is not commonly adopted to remove noise due to the blurring. It often 

comes as a base step for other noise reduction methods. The linear filter operates based on identified 

conditions, such as linearity and shift invariance [13].  

 

• Mean filter: Mean filtering smooths an image by decreasing the intensity gradient between the pixel 

and the next one. The arithmetic mean filter can be represented by the following equation [10]. It is 

the simplest spatial filter, relying on the moving window principle, which replaces the centre value 

of the sliding window with the average pixel value in the kernel [9]. 

 

   
Clean Image: Lena Gaussian Noise Mean Filter 3x3 

Fig.11.  Image Denoising using Mean Filter. 
 

• Wiener filter: It is considered the most essential methodology for noise reduction, and it can be 

defined in the time domain or the frequency domain. The time domain Weiner filter has been 

obtained by minimizing the value of MSE between the given image and its assessment [10]. Wiener 

filtering can easily blur sharp edges. Weiner filtering equation for noise image adaptive retrieval is 

expressed as: 

 

            𝑓́(𝑥, 𝑦) = 𝑚(𝑥, 𝑦) +  
𝜎2 (𝑥,𝑦)

𝜎2(𝑥,𝑦)+𝜎2(𝑥,𝑦)
           (13)   
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Clean Image: Lena Gaussian Noise Wiener Filter 3x3 

Fig. 12.  Image Denoising using Wiener Filter. 

 

 

3.1.2. NON-LINEAR FILTER 

 

 

Non-linear filters are suitable for denoising salt and pepper noise from the image, especially in low-

intensity level scenarios. The non-linear filters, such as the median filter, which is a simple order-statistics 

filter, are less sensitive to outliers than the mean filter and can remove these outliers while retaining sharp 

details of the image. The median filter is used to eliminate the intensity variation between pixels in the 

image [13].  

• Median filter: It is an order statistic filter; it is also based on the sliding window principle, and it 

processes a given image pixel by pixel. Each pixel's value is substituted with the median value of a 

set of neighbouring pixel values. it is the most commonly used non-linear filter, but in high noise 

level scenarios, it may not remove the salt and pepper noise effectively from the images [3]. The 

Median filter exhibits excellent capabilities of noise reduction; it is especially effective in the 

presence of salt and pepper noise, with less blurring compared to linear smoothing filters with a 

similar size [11]. 

 
      Fig. 13.  Image Denoising using Median Filter. 

 

• Gaussian filter: The Gaussian filter is a nonlinear, non-uniform low-pass filter. It is utilized for 

removing noise and detail from the image while adding blur effects to the resulting image. In a 

Gaussian filter, the weights are set for the smoothing purpose based on the outline of the Gaussian 

function [10]. The Gaussian filter has a bell-shaped curve; the standard deviation controls the level 
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of blur and tightness of the bell shape [12]. It does not effectively remove salt & pepper noise [9]. 

The equation of the Gaussian filter is expressed as: 

                                     𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2 𝑒
−

𝑥2 + 𝑦2

2𝜋𝜎2                       (14)    

 

 

 

 

 

 

 

 

 

 
Fig. 14.  Image Denoising using Gaussian Filter. 
 

 

3.1.3. ADAPTIVE FILTERS 

 

 

These filters can selectively tailor their behaviour depending on local image variance by dynamically 

increasing the window size, weight, and threshold value. It performs less smoothing in larger image 

variances to preserve informative content in the image; if the image variance is slight, it performs high 

smoothing. So, it achieves better results compared to linear filtering [13].  

Hybrid adaptive filters, which combine linear and nonlinear mechanisms, integrate iterative 

adjustments of thresholds and parameters according to noise density, providing a robust solution for 

handling diverse noise scenarios while striking a balance between denoising efficiency and detail 

preservation. Numerous studies, such as [14] and [15], have proven that this approach achieves better results 

compared to single-method filtering. 

 

 

3.2. IMAGE DENOISING BASED DEEP LEARNING  

 

 

Deep learning (DL) is a branch of machine learning that has led to significant innovations in artificial 

intelligence. A key aspect of DL is that it permits progress in learning through successive layers of 

progressively impactful representations. 

 

3.2.1. NEURAL NETWORK 

 

Neural network is a mechanism assigned to predictions in DL. It works by following a simple mental 

model; the information appears in a distilled format suitable for handling a particular problem after passing 

through the input layer and successive layers. A neural network is a highly flexible model that can achieve 

high prediction accuracy and solve a wide range of issues. The neuron is a building block of each layer. In 

the input layer, the neuron represents a feature. At the neuron core, an affine transformation is applied to its 

input, which is subsequently routed to an activation function. The affine transformation represents the dot 

product between a trainable weight and a matrix of feature vectors, followed by an offset term. The trainable 

weights matrix is adjusted during training to minimize a loss function that serves as a measure of the model’s 

    

Clean Image: Lena Gaussian Noise Gaussian Filter 3x3 Gaussian Filter 5x5 



    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 4
, 

Is
su

e:
 2

, 
 S

ep
te

m
b

er
, 

2
0

, 
2
0

2
5

, 
©

 2
0

2
0
 F

JI
E

C
E

, 
A

ll
 R

ig
h

ts
 R

e
se

rv
ed

  

22 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

predictive accuracy. Commonly used loss functions include the mean square error (MSE) for regression and 

the cross-entropy for classification problems. Neural networks have numerous hyperparameters, including 

the learning rate, activation function, batch size, and the choice of optimizer. The backpropagation algorithm 

plays an essential role in the NN work, as it efficiently calculates the loss function for all parameters in the 

training [16].  In the 1980s, Fukushima was the first to apply neural networks to image processing, and he 

proposed a self-organized network that learns without a teacher. For image denoising, Yi-Wu Chiang and 

Barry J. Sullivan presented an improvement to a neural network technique for single-image restoration, 

introduced by Zhou et al. After that, weighting factors were applied in the neural network for the removal 

of complex noise. A feedforward network was proposed to reduce computational complexity, thereby 

striking a balance between performance and denoising efficiency. It can smooth the given degraded image 

using Kuwahara filters, and the mean squared error (MSE) is used as the loss function. the mean squared 

error (MSE) was used as a loss function.  

 

 

• Traditional neural networks (NNs) faced major limitations. They demanded high computational 

costs for large images and suffered from a trade-off between denoising efficiency and performance 

[Tamura, 1989]. They also required tedious manual parameter tuning, usually handled only one 

denoising task, and lacked flexibility and scalability for real-world use [Fukushima, 1980; Lucas, 

Iliadis, Molina, & Katsaggelos, 2018]. These problems underscore the urgent need for more 

effective and generalized techniques in image denoising[17]. 

 

• CNN for image denoising: CNNs are supervised deep learning techniques; in this technique, the 

learning process is based on labelled data. The CNNs generally benefit significantly from the 

availability of large training datasets to achieve a good performance [18]. CNN is defined by its 

local receptive field structure, which enables it to perceive better images, much like the human eye. 

It efficiently extracts and learns the features of images, with fewer parameters compared to other 

MLPs, and achieves better performance than MLP-based algorithms. After several improvements 

on CNNs, such as batch normalization and skip connections, many problems can be effectively 

alleviated. [19]. In mathematical terms, the CNN is constructed from three types of layers: the first 

two layers, convolution and pooling, which are responsible for feature extraction, while a fully 

connected layer is the third, which routes the extracted features into the output to make a decision. 

The figure (15) illustrates a simple CNN denoising model involving three convolutional layers. The 

convolution layer is composed of a set of mathematical linear operations, playing a vital role in CNN 

[20]. CNNs are characterized by efficient inference utilizing the GPU's parallel processing 

capabilities, which demonstrates a powerful capacity in terms of prior modeling. On the other hand, 

many of the deeper CNNs are very difficult to train for denoising tasks and suffer from a saturation 

of performance [21].  

CNNs with a deep configuration can adapt to learning, so they are considered the most favoured approach 

for image denoising. Following the remarkable results of the ImageNet Large Scale Visual Recognition 

Competition (ILSVRC) in 2012, CNNs have garnered increasing interest and become a crucial method in 

the computer vision domain, achieving expert-level performance in various fields [20].      
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                   Fig. 15.  A simple CNN denoising model. 

 

• GANs-based image denoising: A generative adversarial network (GAN) is a novel and powerful 

class of deep generative models. GANs overcome the issues associated with Markov Chain Monte 

Carlo (MCMC) training, which used backpropagation for training. They can learn sophisticated and 

multi-dimensional patterns implicitly across various data types. GAN was proposed by Goodfellow 

in 2014. The key idea of GANs is based on the concept of a two-player zero-sum game. Within 

GANs, adversarial learning is employed to train both the generator and the discriminator, as 

illustrated in the figure. GANs aim to generate new data samples from the estimated distribution of 

real data samples. It demonstrates the ability to handle complex distributions and produce impressive 

results [22].  

 

GANs have been successfully applied to several domains and tasks, effectively addressing the issues 

of limited and imbalanced data in practical engineering applications. The GCBD paper introduced GAN to 

image denoising for the first time. In this paper, the authors create paired-image data by training a generative 

network to produce noise, which is then used to train a denoising network, such as DnCNN [23]. After that, 

the researchers create a number of GAN variants, with innovations involving improvements to the model 

structure, novel applications, theoretical extensions, and more. Tripathi et al [24] apply GAN to recover 

clean images by leveraging Latent Vector Recovery (LVR) with the Sharpness Attribute to find the nearest 

point on the GAN manifold. ZhiPing et al. [23] proposed a GAN with a new generator network trained 

using a new loss function to calculate the divergence between the distributions of clean and denoised images. 

Chen et al [25] introduced a GAN-based approach with a Detail Loss to maintain informative details in 

texture-rich regions and achieve more visually realistic results during the denoising task. 

 

Fig. 16.  The basic structure of the GAN model. 
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GANs suffer from an issue; they cannot generate diverse samples. Although they are trained on 

data from multiple models, this limitation is known as the mode collapse problem. The non-convergence 

and instability challenges arise during training, causing the generator to stop receiving necessary gradient 

updates to enhance its outputs, and training stagnates because the generator loses the ability to learn and 

create realistic samples. Several recent advances have focused on addressing the issue associated with 

GANs mentioned above [26]. 

 

4. DENOISING SYSTEMS:  

 

To date, many studies have been published and introduced to denoise the Gaussian noise from 

various image types. Numerous studies utilizing CNNs for this purpose, such as Wencong. Wu et al. [27], 

have developed an Image blind denoising network (DCANet) based on a Dual CNN with a Spatial and 

Channel Attention Module (SCAM), applied a Noise Estimation Network for noise level predictions and 

distribution in the image, allowing adaptive denoising. On the Set12 dataset with a noise level of 75, the 

DCANet achieves a PSNR of 25.75 and an SSIM of 0.7458. 

Sarkar et al.[28] provided an attention-guided CNN (ADNet) model. They have implemented 

median filters on all image feature channels and increased the dilation convolution ratio to expand the 

corresponding field size, which resulted in image denoising.  After quantitative analysis of the BSD500 

dataset, the ADNet model achieves a PSNR of approximately 26.05.  

Singh et al. [29] applied DNN to address Gaussian noise, presenting a Residual Deep Neural 

Networks framework (ResDNN) and rectified linear unit (ReLU) activation, for denoising natural images. 

ResDNN framework achieves an overall PSNR of 31.397 dB in the result on the Set12 dataset. The ResDNN 

represents a significant advancement in the pursuit of high-quality image restoration. The framework 

commonly involves resizing images for training a denoiser, which can lead to information loss.  

Zheng et al. [30] leverage a cloud-based image denoising approach that involves deep neural 

networks DNNs integrated with cryptographic techniques such as secret sharing and garbled circuits to 

preserve privacy. The proposed approach jointly addresses the data without revealing the real content. With 

𝜎 equal to 15, the approach achieved PSNR values of 36.18 for Plaintext and 35.94 for Secure. The security 

approach can be extended to support more complex types of DNN, such as deep convolutional neural 

networks. 

P. Liu et al. [31] proposed the Deep Regulated Convolutional Network (RC-Net), which utilizes 

regulated subnetwork blocks with skip connections for image restoration. The results clearly demonstrated 

that RC-Net consistently exhibits high efficacy, with an average PSNR of 32.87 dB. The RC-Net combines 

large and small convolution filters to make a balance between the network's generalizability and 

performance.  BSD200. 

Meanwhile, Zhue et al. [32] proposed a GAN-based denoising network, which constructs a robust 

denoising network with triple subnetworks supported by an optimization algorithm (OA). Although the 

constructed network requires improvement in denoising effect at low noise levels to achieve optimal 

performance in various noise environments, it exhibits good practicality in many applications, such as target 

detection and recognition. The experimental results using the BDS500 dataset show that at a noise level of 

100, the model achieved a PSNR of 24.71 and an SSIM of 0.7640.  

Interestingly, many papers employing classical Gaussian image denoising techniques with specific 

improvements, as stated in [33], have proposed a Gaussian mixture model (GMM) by Wei et al. The model 

defines pixel similarity by calculating the L2 norm between the Gaussian mixture models of two pixels and 

combining it with their spatial distance, allowing for a detailed comparison between pixels.  The 

experimental results show that the suggested model can effectively remove noise while preserving image 

detail information. The GMM model achieves 16.969 in terms of PSNR, testing on the Academy image 

from the Set12 dataset with noise intensity equal to 0.2. 

https://www.semanticscholar.org/author/Wencong-Wu/2148650937
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Ye et al. [34] developed a novel Deep Cascade Broad Learning System (DCBLS). The DCBLS 

System combines cascaded feature mapping nodes and enhancement nodes for improved feature extraction 

and image denoising performance. The BSD400 dataset was used to test the system's performance with 𝜎 = 

15; the system achieved an MPSNR of 32.2768 and a MISSM of 0.9396. The suggested system may not be 

suitable for denoising blind image scenarios, where noise features are unpredictable and a paired training 

dataset is unavailable.  

Golshan et al. [35] introduced a novel Fuzzy Hysteresis Smoothing (FHS) denoising method that 

expands the norm by combining the fuzzy norm with a logarithmic nature to enhance the FHS accuracy and 

introduce a noise-free image. With the Set12 dataset at noise level 5%, the PSNR falls between 24.91 and 

39.68. The FLAHS scheme is comparatively independent of the noise distribution, allowing it to be 

employed for other noise types by adjusting specific parameters without incurring excessive overhead.  

Averbuch et al. [36] introduced an image denoising scheme integrating a directional quasi-analytic 

wavelet packets (qWPs) based method with the Weighted Nuclear Norm Minimization (WNNM) denoising 

approach. The qWPdn scheme involves qWP transform, adaptive localized soft thresholding, and Image 

Reconstruction strategies. The averaged values of SSIM are 1.002 and 1.026, respectively. The qWPdn–

WNNM scheme can efficiently restore texture details and edges even from substantially degraded images.  

Yang et al. [37] proposed a framework that applies an ensemble learning technique to combine 

simple denoisers for more accurate modelling of noise-free image manifolds. The framework also 

incorporates established denoisers, such as BM3D, and focuses on the shrinkage denoising technique, 

making it effective when training data is limited. It attains an average PSNR of 28.10 at a noise density of 

30%.  

Dai et al. [18] propose a Learnable Global Spatio-Temporal Adaptive Network (LGSTANet) with 

an efficient architecture that comprises aggregation, alignment, and reconstruction. The LGSTA 

aggregation module was adopted for efficient restoration and enhancement. It utilized the BracketIRE 

dataset and achieved a PSNR of 29.82, representing an improvement of 0.91dB compared to other state-of-

the-art methods. 

Similarly, Pang et al.[38] developed the Recorrupted-to-Recorrupted R2R framework, which utilizes 

a DnCNN backbone and constructs statistically independent noisy pairs through recorruption. The 

framework produced competitive results; on BSD68 degraded with AWGN at σ = 50, it yielded 26.13 dB 

of PSNR and an SSIM of 0.709. On real-world SIDD datasets, it achieves 34.78 dB in PSNR terms, and 

SSIM of 0.898, coming very close to supervised models, thereby guaranteeing effectiveness where clean 

reference images are unavailable. 

A Hybrid filtering-based denoising system for Salt and Pepper noise was developed by Gondal et 

al. [39] based on a global unsymmetrical trimmed median filter (GUTM) with the mathematical morphology 

(MM) technique. By using the Digital Mammogram Images Dataset, the GUTM–MM system achieved 

mean PSNR values of 52.31, 49.65, and 48.44 for Normal, Benign, and Malignant images, respectively. In 

terms of PSNR, this Hybrid system performs better than other techniques.  

Li et al. [40] applied a probability statistics-based filtering method. Noise points are defined by 

setting a probability threshold based on their frequency in relation to effective image points. With the Set12 

dataset, the PSNR remains higher than 41 dB for low-density noise, and the SSIM is stable above 0.9 under 

low-density noise conditions and above 0.75 under medium-density noise conditions. This method requires 

additional adaptation for high-density noise conditions, and predefined probability thresholds may need to 

be tuned for optimal results across all noise conditions. 

Kumar et al.[41]  proposed a novel quartile-based approach for reducing salt-and-pepper noise. The 

quartile values are calculated using a convolution window method, and noisy pixels are replaced selectively 

by categorizing the centre pixel based on quartile values.  The approach achieves superior performance in 

extreme noise levels by using the MSRA dataset with a PSNR of 24.4248 at a 0.25 density level; meanwhile, 

it requires significant improvement in low-density noise scenarios (less than 20% noise). 
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Muna Majeed Laftah. [42] Conducted the Multiwavelet Transform (MWT) image denoising system. 

The proposed system processes the HH coefficient using the Tri-State Median filter (TSMF) and the 

Switching Median Filter (SMF), supported by various shrinkage rules, to remove noise while maintaining 

image details. The test images from set12 were corrupted with salt and pepper noise at varying levels of 

5%, 10%, 20%, and 30% to evaluate the performance of the filters under different noise intensities.  

Sikhakhane et al. [43] introduced two algorithms for Speckle noise removal from breast ultrasound 

database images: the hybrid filter, which is an aggregation of digital filters, and a five-layer Denoising 

Convolutional Neural Network (DnCNN) based algorithm. The hybrid filter performs better when the noise 

level ranges between 0.1 and 0.3, achieving a PSNR range between 29.99 and 25.85. When the noise level 

falls between 0.5 and 0.9, the DnCNNL5 achieves a PSNR range of 24.42 to 23.35, indicating better 

performance.  

Shuo et al. [44] also proposed a Multi-Layer Fusion Enhancement Method based on Block Matching 

and 3D Filtering for Speckle Noise Denoising. The MLFE-BM3D scheme involves NSCT hard threshold 

denoising and enhancement, multiple image layers’ combinations, and frequency domain enhancement 

techniques. For the Lena local image with noise variance σ² = 1300, MLFE-BM3D attains a PSNR of 

28.9134. The long-time-consuming nature of the BM3D algorithm can be improved for robust denoising.  

A model that targets the denoising of Gaussian, SAP, and Speckle noise in a non-drowsy faces image 

dataset was suggested by K. Hussein et al.[45] The model distinguished drowsiness features relies on a 

median filter to remove noise before classification. The reported results for salt-and-pepper noise, Gaussian 

noise, and speckle noise are 20.97, 20.43, and 19.78, respectively. The median filter may be less effective 

for specific types of noise, and its performance decreases under high noise densities, especially with speckle 

noise. 

Satapathy et al. [46] used a frequency-based decomposition technique that utilizes bi-dimensional 

empirical mode decomposition (BEMD) to analyze the noisy image into intrinsic mode functions (IMFs) 

and a residue. Standard filters are employed to filter each component separately, removing noise from 

homogeneous areas in the MRI brain dataset images while maintaining structures such as edges and corners, 

and improving brightness. 

In 2023, Uzakkyzy et al. [47] applied the Attentive GAN to process noisy images affected by 

Gaussian noise, SAP noise, and noise of lines and stripes from the Kaggle open-access database. Gaussian 

filtering-based processing was also applied to the clean image to enhance the final image quality further. 

With a noise level exceeding 50, the framework achieves a high SSIM value, lower Gloss and D-loss values, 

indicating improved performance.  

        Rafiee et al.[48] employ a selective convolutional (SeConv) block to prepare the network input for 

subsequent conventional layers and tackle the participating issue of pure noisy pixels in image 

reconstruction. This approach surpasses the existing innovative SAP denoising scheme by effectively 

preserving edges and image details. On the color BSD68 dataset, it achieves a mean PSNR of 34.73 dB 

and an SSIM of 0.947. The authors do not explicitly discuss SeConvNet issues, such as computational 

complexity or potential weaknesses in specific environments. 

Many studies implement noise detection and classification models, such as [45], that involve 

classifying four noise types. Utilizing feature extraction via Wavelet Transform (WT), Dimensionality 

reduction, followed by a CNN to identify the type of noise for the classification task. By applying the 

PSA model to the Ancient mural image dataset, it achieves an accuracy of 99.25% for noise type 

classification. This model achieves highlighted performance in noise types classification compared with 

the model which introduced by Al Mudhafar et al [49] that is developed a model to determine the existence 

of noise in 9 classes noisy image dataset and then classifying the noise type based on deep SVM classifier 

combine with wavelet scatter for five noise types classification, including Gaussian, Salt & Pepper, 

lognormal, Speckle, and Rayleigh. The proposed model achieves an overall noise detection accuracy of 

 91.30%.  
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Table 1. The performance result of the denoising system. 

Denoising 

Approach 
Ref. Dataset 

Noise 

level 
Performance index 

C
la

ss
ic

al
 M

et
h

o
d

s 

Zhue et al. [28],(2021) BDS500 100 PSNR:24.71, SSIM:0.7640 

Golshan et al. [35], (2021) Set12 5 - 50 PSNR:39.68- 24.91 

Gondal et al. . [39], (2021) MIAS 30 PSNR: 52.31 , MSE: 0.37. 

Zhongshen Li. [40], (2022) Set12 15 PSNR:40.0889, SSIM: 0.9210. 

Kumar et al. [41] , (2021) MSRA 0.25 PSNR: 24.4248. 

Muna M.Laftah, [42], (2021) Set12 5-30 PSNR: 39.35. 

Averbuch et al. [36], (2023) Set12 𝜎 =100 SSIM: 0.999/1.143 

Yang et al. [37], (2020) Set12 σ = 25. PSNR:28.93 

C
N

N
s 

Ye et al. [34], (2021) BSD400 𝜎 = 15 PSNR: 32.2768, MISSM: 0.9396. 

Rafiee et al. [48], (2023),  BSD68 𝜎 = 15 PSNR: 34.73, SSIM: 0.947 

Wencong Wu et al.[27], (2023) set12 75 PSNR: 25.75SSIM: 0.7458  

Singh et al.[29], (2020) Set12 𝜎 = 20 PSNR: 31.397. 

Zheng et al.[30], (2021) ChestX-ray8 15 PSNR: 36.18, 35.94 

 Wu et al.[33], (2021)  Set12 0.2 PSNR: 25.75, SSIM: 0.7458 

P. Liu et al. [31], 2019 BSD200 70 PSNR:32.87, SSIM: 0.8961 

Sikhakhane et al.[43], (2024) Breast ultrasound 0.5 - 0.9 PSNR: 24.42-23.35 

Shuo et al. [44],(2019).  set12 0.1 - 0.9 PSNR: 28.9134. 

L. M. Satapathy et al. [46], (2022) MRI brain images. 0.01 PSNR: 27.53  

Dai et al. [18], (2021) BracketIRE NR PSNR: 35.78, SSIM: 0.919   

G
A

N
 Zhue et al.[32], (2022) BDS500. 100 PSNR: 24.71, SSIM: 0.7640 

Sarkar et al.[28], (2020) BSD500 50 PSNR: 26.05 

Uzakkyzy et al. [47], (2023) Kaggle open-access 50 SSIM is close to one 

Across the cited studies, CNN-based denoisers typically achieve about 31–35 dB PSNR on 

Set12/BSD68 under AWGN, generally outperforming classical filtering at mid to high noise. while the 

GAN approach reports PSNR around 24–36 dB, it is affected by noise intensity, training data, and the 

inclusion of perceptual losses. In narrow or low-noise settings, Classical filtering can be competitive, but it 

degrades with higher σ and non-additive noise scenarios. In such a case, the comparability between the 

various approaches is limited because the studies differ in noise levels and characteristics, dataset domain, 

and image modality. 

5. CONCLUSIONS 

 

Numerous papers have investigated image denoising, and the field continues to expand; by contrast, 

denoising itself becomes challenging without an accurate understanding of the underlying noise models. 

Accordingly, this review synthesizes noise taxonomies and provides an extensive overview of prominent 

noise removal techniques in images. 

In practice, the CNN-based denoising approach consistently outperforms classical filters, which 

remain competitive only in low-noise scenarios. Meanwhile, the GAN-based denoiser can deliver superior 

perceptual fidelity; however, it faces instability due to the adversarial training dynamics and its dependency 

on carefully tuned losses.  

In summary, the field lacks a robust blind denoiser that efficiently handles multiple noise types, 

including multiplicative, additive, impulse, and structured noise, with spatial variation. Additionally, a 

Standardized system evaluation across diverse benchmark datasets, under noise intensities ranging from 

light to heavy levels, is necessary to assess its efficiency, ability to generalize, and capacity to handle various 

noise types.Future work should explore the strengths of CNNs and GANs through hybrid designs, trained 

with noise-conditioned, multi-objective perceptual losses, and a calibrated adversarial term to enable blind 

generalization. 

https://www.semanticscholar.org/author/Wencong-Wu/2148650937
https://www.semanticscholar.org/author/Wencong-Wu/2148650937
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