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                Abstract The rapid advancements in artificial intelligence (AI) have brought forth deepfake 

technologies, leveraging sophisticated deep learning algorithms to generate highly realistic yet deceptive 

media. This poses a substantial threat to individuals’ integrity, privacy, and security and can lead to 

widespread social and political instability. In response, there is an imperative necessity to create advanced 

computer models capable of efficiently identifying counterfeit content in real-time and notifying consumers 

of potential manipulations. This paper presents a comprehensive examination of recent studies on deepfake 

detection utilizing deep learning techniques. This paper aims to advance the forefront by systematically 

categorizing the diverse techniques employed for identifying counterfeit content. Furthermore, we outline 

the merits and drawbacks of each approach and propose many directions for future research to address the 

persistent challenges and shortcomings in deepfake content identification.  

 

Keywords: Deepfake Detection; Convolutional Neural Networks (CNN); Image Manipulation; 

Generative Adversarial Networks (GANs); Transfer learning; AXI explanation. 
 

 

1. INTRODUCTION  

          The fast development of AI in the past few years has resulted in Deepfake technology, which uses 

deep learning algorithms to generate hyper-realistic, but ultimately—has been warned about for many 

images that seem indistinguishable from genuine ones. This phenomenon has elicited global anxiety, 

especially about the reliability and accuracy of digital content in sectors, e.g.,  media, cybersecurity, and 

legal systems [1]. Originally understood as tools for entertainment and creative manipulation, deepfakes 

have since evolved into a major threat, used to spread misinformation, commit identity theft and tilt public 

opinion. The emergence of deepfakes has developed alongside a rise in cybercrimes involving manipulated 

images,  as shown by a staggering 67% growth in reported cases during the last three years [2]. Hence, the 

need for reliable detection systems has never been more important, especially to protect digital pieces of 

evidence from tampering and misuse[1]. Current detection methods largely rely on convolutional neural 

networks (CNNs) known for being efficient in image processing and capable of detecting subtle artefacts 

indicating tampering. Advancements in methods of creating deepfakes make it tremendously more 

challenging for traditional detection algorithms to deal with the complexities of modern-day manipulations. 

This has propelled the development of advanced deep-learning models capable of understanding images 

with greater accuracy and complexity [3]. In this paper, we focus on a comprehensive review of state-of-

the-art techniques for detecting and classifying deepfake images. Focus is placed on evaluating the 

mailto:bushrat.alsaalim@student.uokufa.edu.iq
mailto:faraha.altaee@uokufa.edu.iq
mailto:bushrat.alsaalim@student.uokufa.edu.iq
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effectiveness of such strategies together with an acknowledgement of their limitations, and a systematic 

framework is proposed in order to study alternative combinations according to different performance 

measures and evaluation criteria. This study explains the strengths and limitations of existing detection 

algorithms, emphasizing essential domains that necessitate additional investigation and innovation to 

address the increasing threats posed by deepfake technology   [3]. 

 
Table 1: The top five datasets used in deep fake image 

No. Dataset Name Description 

1 FFHQ (Flickr-Faces-HQ) 

70,000 high-quality real human 

faces; often used to generate fake 

faces with GAN models like 

StyleGAN. 

2 100K-FACE 
100,000 synthetic face images 

produced utilizing StyleGAN. 

3 
DFFD (Diverse Fake Face 

Dataset) 

Combines images from other 

datasets like FFHQ and CelebA, 

consisting of both real and 

manipulated faces. 

4 CASIA-WebFace 
Over 500,000 real-face images from 

around 10,000 subjects. 

5 CelebA (included in DFFD) 
More than 200,000 real celebrity 

face images. 

6 140k Real and Fake Faces 

Consists of 140,000 images: 70,000 

real and 70,000 generated using 

StyleGAN. 

 

2. Literature Review  
The Section examines existing literature involving deepfake technology. 

          Chia-Yen Lee et al. (2018) They proposed a deep forgery discriminator (DeepFD) to detect and 

identify computer generated image efficiently. To overcome this challenge, they employed contrastive loss 

to learn the unique features from synthesized images created by various Generative Adversarial Networks 

(GAN). By adding a classifier to improve detection performance, for the proposed DeepFD model, 94.7% 

of GAN images generated by various mainstream GANs were successfully identified. The test results 

demonstrate how well the model works in identifying real images and fake images [4] . 

 

            An investigation of a approach to identify deepfake facial images using deep ensemble neural 

network techniques along with transfer learning has been carried out by [104] Jannatul Mawa and Md. 

Humayun Kabir (2024). They used transfer learning and a weighted average ensemble technique to detect 

human fake faces by using three different pre-trained architectures (ResNet50, DenseNet201, InceptionV3) 

and "Real and Fake Face Detection" dataset. In the end, they obtained 64.71 accuracy[5]. 

          Bogdan Ghita et al. [18] developed a deepfake detection approach using a Vision Transformer (VIT) 

model trained and tested on a composite dataset of real images and deepfakes collected from Kaggle of 

40,000 images. This result indicates the VIT model got a high score, 89.9125%[6]. 

           Suganthi ST and et al (2022) , They proposed a deep learning-based deepfake face image detection 

method via Fisherface + local binary pattern Histogram(FF-LBPH) The Fisherface algorithm initialises 

dimensionality reduction in the facial feature space using LBPH for facial recognition, and applies a Deep 

Belief Network (DBN) with Restricted Boltzmann Machine (RBM) in detecting the Images. The dataset 
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used in this study contains datasets like FFHQ, 100K-Faces, DFFD, and CASIA-WebFace. The accuracy 

rate on CASIA-WebFace dataset and DFFD dataset with the proposed FF-LBPH-DBN method was found 

to be 98.82% and 97.82% respectively[7]. 

 

          Peng Zhou and et al (2018) , This method used a two-stream method to detect face tampering based 

on the training of GoogLeNet and patch-based triplet networks, where one stream of the GoogLeNet detects 

the tampering artifacts in a face classification stream, while the patch-based triplet network captures the 

local noise residuals and camera characteristics for the second stream. Moreover, they applied two different 

types of online face-swapping technologies to create a new dataset with 2010 modified images, each with 

update face: SwapMe and FaceSwap Dataset They used SwapMe + FaceSwap train So the outcome was 

SwapMe test and FaceSwap test (0.995, 0.999) respectively [8].  

            Iszuanie Syafidza Che Ilias and et al (2024) They took a look at how artificial intelligence could be 

used to detect deepfake pictures. They focused on three classes of convolutional neural network (CNN) 

algorithms, which are ResNet, VGG16, and VGG19. A dataset of 1,200 photos (both fake and real ) was 

used to evaluate the accuracy of these CNN models. Those deepfake images were created using FaceApp, 

a popular image-altering app. In this regard, our findings show that VGG19 outshines both VGG16 and 

ResNet50, and accuracy rate of 98%[9]. 

          Ananda Adhicitta Wangsadidjaja (2023)  ,They created a tool to detect deepfakes using a 

Convolutional Neural Network, namely the ResNet-50 model that uses hoax data generating from ProGAN 

model. This approach achieved an accuracy of 85%, precision of 100% and recall of 65% in detecting these 

pictures. But original StyleGAN and BigGAN deepfakes were not as effective on the model [10]. 

         Wahidul Hasan Abir et al. Deep learning is the most utilized methodology for large-scale exploration 

of generative media such as deepfakes—(2023)—Advanced algorithms' proficiency in detecting 

deepfakes, and their evaluation methods via Local Interpretable Model-Agnostic Explanations (LIME) are 

extensively discussed in this article. This paper demonstrated style transfer from both sources: a dataset of 

70,000 real images from the Flickr dataset (Nvidia authors) and 70,000 synthetic images created with 

StyleGAN at a resolution of 256 pixels. In an effort to achieve a high degree of accuracy, various 

Convolutional Neural Network (CNN) models (i.e., InceptionResNetV2, DenseNet201, InceptionV3, 

ResNet152V2) were employed. The LIME approach was applied to explain the regions of the image that 

affect the model's classification decisions. InceptionResNetV2 had the best accuracy of 99.87% of the 

models, followed by DenseNet201, InceptionV3, and ResNet152V2 with 99.81%, 99.68%, and 99.19%, 

respectively. The LIME technique further corroborated these findings, increasing the interpretability of 

models for explainable artificial intelligence (XAI)[11].  

             Majed M. Alwateer (2024) , In a novel pipeline involving three key components, A methodology 

for the production and categorization of explainable deepfake images The first part, called Instant ID, 

creates deepfake pictures from actual photos. The second module is Xception that classifies the image into 

real or deepfake. The third part is used for interpretability is a Local Interpretable Model-Agnostic 

Explanations (LIME). With the ImageNet dataset, the new model showed unparalleled results of 100% in 

both F1 score and accuracy. In comparison, the VGG16 and CNN models had an F1 score and accuracy of 

94%, and the Multimodal Network had an F1 score and accuracy of 61%[12] . 
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It is important to summarize previous works, focusing on the most important keywords in them, as in 

Table 2 . 

 
Table 2 Summarizing the key information from each study 

Accuracy 
(%) 

Dataset Proposed Approach Year Reference No. 

94.7% 

Fake images 
produced by 
several GANs 

Deep Forgery 
Discriminator (DeepFD) 

2018 Chia-Yen Lee et al. [4] 1 

64.71% 
Real and Fake Face 
Detection dataset 

ResNet50, Dense201, and 
InceptionV3 

2024 
Jannatul Mawa and Md. 
Humayun Kabir [5][6] 

2 

89.91% 

Dataset from 
Kaggle (40,000 
images) 

Vision Transformer (ViT)-
based deepfake detection 
technique 

2024 Bogdan Ghita et al. [6] 3 

98.82% 
(CASIA-
WebFace), 
97.82% 
(DFFD) 

FFHQ, 100K-Face, 
DFFD, CASIA-
WebFace 

Fisherface and Local 
Binary Pattern 
Histogram (FB-LBPH) 

 

2022 Suganthi ST et al. [7] 4 

99.5% 
(SwapMe), 
99.9% 
(FaceSwap) 

SwapMe and 
FaceSwap 

Dual-stream network for 
facial tampering detection 
using GoogLeNet 

2018 Peng Zhou et al. [8] 5 

98% 

Deepfake images 
generated using 
FaceApp 

VGG16, VGG19, and ResNet 2024 
Iszuanie Syafidza Che 
Ilias et al. [9] 

6 

Accuracy: 
85% 
Precision: 
100% 
Recall: 65% 

AI-generated 
photos (ProGAN) 

Convolutional Neural 
Network (ResNet-50) 

2023 
Ananda Adhicitta 
Wangsadidjaja [10] 

7 

InceptionV3
: 99.68%, 
ResNet152
V2: 99.19%, 
DenseNet20
1: 99.81%, 
InceptionRe
sNetV2: 
99.87% 

Flickr dataset 

Local Interpretable Model-
Agnostic Explanations 
(LIME) for various CNN 
models 

2023 
Wahidul Hasan Abir et al. 
[11] 

8 
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Proposed 
Model: F1 
Score 
100%, 
Accuracy: 
100% 
VGG16 and 
CNN: F1 
Score 94%, 
Accuracy 
94% 
Multimodal 
Network: 
F1 Score 
61%, 
Accuracy 
61% 

ImageNet dataset 

Instant ID for creating 
deepfakes, Xception for 
classification, LIME for 
explainability 

2024 Majed M. Alwateer [12] 9 

 

Footnotes: 

1. FFHQ: Flickr-Faces-HQ dataset, a collection of high-resolution facial images often used for training 

GANs. 

2. DFFD: Diverse Fake Face Dataset, combining real and manipulated faces from multiple datasets. 

3. GANs: Generative Adversarial Networks, a deep learning technique for generating synthetic images. 

4. ProGAN: Progressive Growing of GANs, a model for generating high-quality synthetic images. 

5. SwapMe and FaceSwap: Specialized datasets containing face-swapped images for tampering detection. 

6. AUC: Area Under the Curve, a metric for evaluating the performance of classification models. 

 

3.  DEEPFAKE GENERATION  

           DNNs are made up of a collection of linked components known as neurons. Collectively, these 

units carry out computational tasks and aid in the resolution of challenging issues. The technologies 

commonly associated with the creation of deepfakes include the GAN architecture and the autoencoder-

decoder model [13].  

 

3.1. Autoencoders 

            Autoencoders are important for generating new data by learning how to compress and reconstruct 

data that passes through, and they are used widely in deep fake technology where visual features like 

faces are important. This system consists of two parts: an encoder that compresses the input images into a 

small latent representation, and a decoder that reconstructs the original image from this compressed 

representation. They detect essential features/expressions on the face from deepfakes and realistic 

alteration/exchange of the face in images and video[14].  

3.1.1. How Autoencoders Work in Deepfake Generation: 

1. Facial Encoding: Autoencoders are designed to capture and represent the distinctive facial 

structures and expressions of individuals by transforming the image into a compressed low-

dimensional latent space. 

2.  Reconstruction and Face Manipulation: Following the encoding process, the decoder utilises the 

latent representation to reconstruct the image. The process of creating deepfakes can involve 

modifications to the face, including adjustments to expressions or the exchange of faces between 

individuals. 
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3. Training: The effectiveness of autoencoders in generating realistic deepfakes is contingent upon 

the quantity and quality of the training data available. Extensive datasets enable autoencoders to 

enhance their generalization capabilities, yielding more credible outcomes [13]   

3.2. Generative Adversarial Networks (GANs) 

        GAN is used in most of the deepfake technologies available today. In 2014, Ian Goodfellow made the 

initial proposal for the GAN architecture  [15]. He presented a framework that makes use of two neural 

networks that compete with one another to produce new data. One of the neural networks creates the new 

data, while the other separates it from the initial training set. Contesting the two neural networks tends to 

enhance the neural network's discriminating capacity as well as the quality of fake data generated . GAN 

may produce a unique image on its own if a lot of images are provided to it [16]. Attaching a filter, however, 

is essential to assist determine whether or not these distinct outputs are appropriate. GANs use a 

discriminative network to do this, comparing the generated data with actual data. Both are taught to 

collaborate until the resultant output is mistakenly labeled as authentic, which happens around 50% of the 

time. This supports our conclusion that the generator model is producing credible examples with success. 

The schematic representation illustrating the GAN architecture's workflow is displayed in Fig. 1 . The 

generator and discriminator of the GAN architecture are trained using the min-max technique [15]. A fake 

output is epresented by the min(0), but a real output is represented by the max (1). The discriminator's 

objective is to approach the maximum value as closely as possible in order to produce a deepfake that seems 

realistic and can be used to swap faces in pictures and movies. For creating fresh data, GANs are better 

suited  [17]. The primary benefit of GANs over autoencoders is their greater versatility, as evidenced by 

their ability to generate many data classes that resemble the MNIST dataset [18]. Conversely, autoencoders 

work better when compressing data to smaller dimensions or producing semantic  
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Figure 1. Basic GAN architecture 
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4. Types of manipulation in deep fake faces 

        As Figure 2 illustrates, There exist five primary categories of deepfake manipulation. A type of 

manipulation known as face synthesis involves creating images of non-existent human faces [19]. In 

attribute modification [20] , the only area that is changed is the one that is related to the characteristic. This 

technique enables various modifications, such as altering skin tone, adding or removing eyeglasses, and 

even more dramatic changes like adjusting age and gender. However, this study emphasizes manipulations 

that are predominantly found in video formats, as these tend to generate higher levels of engagement 

compared to image-based content. The dynamic characteristics of videos enhance the viewer's experience 

and interaction, making video manipulations particularly significant in the context of deepfake technology. 

 

                       
 

Figure 2. The five principal categories of types of deepfake manipulation. 

 

Facial manipulation methods can be categorized into several distinct types based on the techniques used to 

alter or synthesize facial features. Below are the primary methods commonly employed: 

 

4.1. Entire Face Synthesis: 

 

This method involves generating an entirely new face using generative models, such as Generative 

Adversarial Networks (GANs). The generated face is not based on any real individual, and both the facial 

features and the identity are artificial [21]. 

Examples: ThisPersonDoesNotExist.com uses GANs to generate synthetic faces. 

 

4.2. Identity Swap (Face Swapping): 

 

In identity swapping, the facial identity of one person is replaced with another person's face while retaining 

the original facial expressions and pose. This technique is often used in deepfakes. 

Tools and datasets: Popular datasets such as Celeb-DF provide real and manipulated images where face 

swapping has been applied [22]. 

 

 

Face manipulation 
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Entire face 
synthesis

Lip-syncing

Face  
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4.3. Attribute Manipulation: 

 

Attribute manipulation entails modifying specific facial attributes—such as age, gender, hairstyle, or facial 

expressions—while leaving the remainder of the face intact. This targeted approach allows for nuanced 

changes that can significantly alter a person's appearance without affecting the overall structure of the face. 

Such manipulations can create realistic alterations, making them particularly useful in applications such as 

entertainment, advertising, and virtual environments. This method can use apps like FaceApp or models 

that focus on facial features' transformation [23]. 

Example: Changing someone's age or adding/removing facial hair using FaceApp. 

 

4.4. Expression Swap: 

 

       This method changes the facial expressions of a person without altering their identity. Techniques in 

this category manipulate the muscles and facial landmarks to change expressions like smiling, frowning, or 

surprise. Datasets: Face Forensics++ includes expression swaps, where the expression of a person is 

changed artificially while keeping the identity intact [24], as shown in figure . 

 
Figure 3. presents examples of real and manipulated facial images across four categories of facial manipulation  [25] . 
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5. Deepfake Detection 

         In the field of deepfake detection, various approaches have been developed to identify manipulated 

content. Detection systems leverage certain inconsistencies and traces of manipulation left during the 

creation of deepfakes to classify content as either fake or authentic. As deepfake techniques expand to 

include images, videos, and audio content, it is essential to develop effective detection methods for these 

manipulations. Detection approaches are generally categorized into three main types: image/video-based 

detection, audio spoofing detection, and multimodal approaches [26] . 

 

 

5.1.  Deepfake Detection Images 

         Several techniques have been developed to leverage deep networks for the identification of images 

generated by Convolutional Neural Networks (CNNs). These neural network-based approaches enhance the 

detection of fake images, particularly those of faces, by employing a deep convolutional neural network that 

utilizes pre-processing techniques to evaluate the statistical properties of the images.Initially, the model 

extracts facial features using face recognition networks within a deep learning framework. A fine-tuning 

process is then applied to optimize these facial features for distinguishing between real and fake images. 

Preliminary results from validation datasets indicate promising outcomes with these methodologies [27] . 

However, a significant limitation in prior studies is the neglect of the forensics model's generalizability; 

they often train and test their models on the same type of dataset, which may hinder the robustness of the 

detection.To address this issue, a novel forensic convolutional neural network (CNN) is proposed, 

incorporating Gaussian Blur and Gaussian Noise as image pre-processing techniques to enhance the 

identification of fake human images. This model is designed to amplify high-frequency pixel noise while 

mitigating low-level pixel statistics, thereby ignoring low-level high-frequency artifacts typical in CNN-

generated images. Consequently, the forensic classifier becomes more adept at differentiating between real 

and fake faces by learning more salient features associated with both image categories. Experimental results 

demonstrate the model's efficacy in detecting counterfeit images. Furthermore, to improve fake photo 

detection, a hybrid technique has been introduced alongside traditional deepfake detection models. For 

example, a two-stream network has been proposed to identify face tampering. In this architecture, 

GoogleNet employs a face categorization stream to train the model using both manipulated and real images 

[28]. Additionally, A patch triplet stream records low-level camera attributes and local noise residuals, 

which are then utilized to extract features through a dedicated feature extractor. 

 

 
 

Figure 4. The steps of the deep fake detection Image 

 

6.  Using techniques of Transfer Learning Neural Network Techniques 

         This section looks at the neural network approaches that are used with transfer learning. Using a 

technique called transfer learning  [4], we create models for the prediction process that are already learned. 

High prediction performance can be achieved by applying the features that have been learned through 

transfer learning. Using a pre-trained network, the transfer learning-based fine-tuning approach retrains a 

portion of the network using the new dataset. This section examines the operation of transfer learning 

methods used in deepfake detection. Neural network techniques are analysed architecturally and the 

configuration parameters are established. 
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6.1.  Xception Technique 

 

     Xception is a neural network based on transfer learning used mainly for image recognition tâches. 

Xception means "Extreme Inception". The Xception model is an extension of the Inception architecture, 

which is distinctly both an efficient and low-speed design on depthwise separable convolution layers. The 

Xception model architecture employs depth-wise separable convolution layers. The Xception model has 

the smallest weight serialization. When we talk about the architecture of the Xception model, it is 

compiled on 36 convolutional layers, which helps it to learn effective features[29]. 

 

6.2. NAS-Net Technique 

 

           Neural Search Architecture (NAS) Network is referred to as the NAS-Net. The NAS-Net  [29] is a 

model from the convolutional neural network family that is based on transfer learning. The Google Brain 

analyzes the NAS-Net . The ImageNet database  [30], which contains more than a million photos, is used 

to train the NAS-Net model. The calculation costs of the model are lower. The NAS-Net architecture's 

blocks are searched using the reinforcement learning search approach . In order to detect deepfakes, our 

research study substituted MLP blocks for the top layers of NAS-Net. 

 

6.3. Mobile Net Technique 

 

          In our study, Mobile Net , we have created a transfer learning model for deepfake detection[31]. 

Google made the Mobile Net model open-source. Fast processing applications related to computer vision 

heavily depend on MobileNet.. The model architecture is simpler and requires less processing. Depthwise 

separable convolutions are used in the architecture's construction  [32]. In depthwise separable convolutions, 

the two operations—depthwise and pointwise—are carried out. When compared to standard convolutions, 

this results in fewer parameters. In our research project, MLP blocks were used in place of the top layers of 

Mobile Net. 

 

6.4. VGG16 Technique 

 

     The VGG16 is one of the most commonly used pre-trained neural networks for image recognition 

tasks[33]. The VGG16 model was proposed by K. Simonyan and A. The VGG16 architecture is based on 

CNN. The VGG16 Model architecture was introduced in the year 2014 in the ILSVR competition. Based 

on our dataset, we implemented the VGG16 model to detect deepfake videos. In our research work, we 

use a multi-layer perceptron (MLP)  [34] block replaces the top layers of VGG16. 
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Figure 5: VGG-16 Architecture of a VGG16 mode 
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6.5. VGG19  

Then VGG19 which is the convolutional neural network model is better than the first one which is only the 

one convolutional layer because the VGG19 have many convolutional layers and nonlinear activation 

layers. Because of the layer structure, rectified linear unit (ReLU) which means the largest value in the 

picture region will be the pooled value of that area, can be used as activation function and for down sample 

through max- pooling. The role of the down sampling layer is to reduce the number of parameters, retain 

the main properties of the sample, and improve the network's ability to resist picture distortion. 

 
Figure 6.Architecture of VGG19 

 

6.6. VGGFace 

 

         VGGFace is a model for image recognition that leverages standard datasets for face identification 

from Oxford's Visual Geometry Group researchers to provide the most sophisticated results [35]. With this 

method, we can use only a moderate amount of annotation power to create a big training data set. To 

construct the model, we followed Tai Do Nhu and Kim's  [36] VGGFace design. Convolutional and max-

pooling layers were present in each of the five layer blocks in this model. The first and second blocks each 

contained two 3 × 3 convolution layers, which were followed by a pooling layer. A max-pooling layer 

comes after three 3 × 3 convolution layers, each made up of the third, fourth, and fifth blocks. 

In all convolutional layers, the ReLU activation function was used. We have had to modify VGGFace to 

meet our demands because it employs pretrained weights. We added dense layers to improve the facial traits 

that were obtained from the five-layer blocks. Lastly, there was also a dense layer included in the output 

layer that had sigmoid activation. 
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7. Evaluation metrics of deepfake detection models 

         Five distinct Metrics have been employed to assess the models' performance: area under the ROC 

curve, F1-score, accuracy, precision, and recall. 

7.1. Accuracy 

Accuracy is defined as the frequency of correct estimations. This formula is used to calculate accuracy. 

accuracy= (number of correct predictions/ total number of predictions made)  (1) 

7.2. Precision 

Precision, which is another name for positive predictive value, is the degree to which the model correctly 

predicts positive values out of all the positive values it is capable of predicting  , "Precision" refers to the 

following : 

precision=True Positive / (True Positive + False Positive)     (2) 

7.3. Recall 

The model's Recall can be utilized to assess the efficacy of identifying true positives. A high recall 

indicates that the model has effectively identified true positives. Conversely, a low recall value causes the 

model to have a lot of false negatives. The following is what is meant to be remembered: 

recall=True Positive /(True Positive + False Negative)         (3) 

7.4. F1-Score 

It is the precision and recall harmonic mean. Comparing the F1-score to the accuracy measure of the 

incorrectly classified cases yields a more accurate estimate. 

F1 _score=2(Precision/Precision + Recall)                         (4) 

Recall and precision must be balanced in the F1-score. As previously observed, True Negatives play a 

significant role in accuracy. If there is an unequal class distribution (many Actual Negatives), and we need 

to balance precision and recall, the F1-score would be a preferable metric  [37]. 

7.5. Receiver Operating Characteristic Curve (ROC) and Area under the ROC Curve (AUC) 

        The AUC-ROC curve is used to evaluate the algorithm's performance for classification tasks. The 

probability curve is called ROC, and the degree or level of separability is indicated by AUC. It demonstrates 

the model's ability to distinguish between different classes. Generally speaking, the AUC shows how 

accurately the model predicts classes 0 and 1. For instance, the more accurately the model distinguishes 

between patients who are ill and those who are not, the higher the AUC. First, let's define a few terms. At 

different classification levels, the connection between True Positive Rate and False Positive Rate is depicted 

by the receiver operating characteristic (ROC) curve. More items are labeled as positive when the 

categorization criterion is lowered, which raises the number of True Positives and False Positives [36] . A 

model is considered good if its AUC is close to 1, which suggests a high level of separability. AUC values 

near zero indicate that a model is insufficient since they have the lowest degree of separability. Indeed, it 

appears that the outcome is reciprocal. It includes mixing together 1s and 0s and 0s with 0. Moreover, an 

AUC of 0.5 implies that the model has no ability to distinguish between classes at all. 

 

8. Explainable AI (XAI) 

       Although artificial intelligence (AI) systems are being used in many advanced applications today, the 

decisions from many AI models are difficult to interpret and trust due to their opaque natures. It can often 

be important to know WHY these models modelled this way. Therefore, there is a demand for Explainable 

AI (XAI) methods to maintain faith in AI techniques. The main goal of eXplainable AI (XAI) is to create 

models that people are able to comprehend, especially in sensetive sectors like military, banking, 

healthcare, etc. Domain experts in these fields expect more than solutions to their problems; they expect 

solutions they can trust and understand the reasoning behind. This intuitiveness is useful not just for experts 

looking to analyze output, but also for developers, as bad output can lead to more exploration about how 
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the system functions. AI approaches assist (i) the assessment of current knowledge, (ii) the enhancement 

of knowledge, and (iii) the development of new hypothesis or theory[38]. Moreover, the overarching goals 

of XAI methods are to enhance justification, improve control, foster system refinement, and facilitate 

discovery [39] .The benefits of XAI can be summarized as follows, offering greater transparency into black-

box systems [40]: 

- Do so in a way that empowers people to reduce the harms of automated decision-making. 

- To help people make better decisions. 

- To identify and help mitigate security vulnerabilities. 

- – Human alignment of algorithms is a primary goal 

- Helping brands set higher standards in the development of AI using products thus building trust 

among businesses and consumers. 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. White-box, gray-box, and black-box models depicted. 

8.1. Black-Box Model 

        In explainable AI (XAI), we call a model a black-box model when it is a machine learning model that 

is treated as a sensory approach, where its internal processes and reasons for its predictions are obscured 

from users and not understandable. Although these models generate predictions from input data, their 

decision-making processes are not transparent, preventing the user from learning how the model works, 

finding out if the model is biased or produces mistakes, or holding any responsibility regarding its 

conclusions. In the context of XAI, "black box" models are often contrasted with "white box" or 

"transparent" models, where the internal mechanisms and the reasoning behind the predictions are fully 

visible and interpretable. Transparent models allow individuals to more easily understand and trust the 

conclusions made by the system. However, despite their effectiveness, highly predictive models such as 

deep neural networks (DNNs) are often lacking with respect to interpretability, representing challenges that 
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needs be overcome, particularly in domains that demand rational and accountable decision making. the 

following explanatory techniques: 

8.1.1.Grad-CAM++  [41]  makes use of the gradients produced during back-propagation to generate 

visual explanations. To produce the visual explanation, a weighted combination of the positive partial 

derivatives of the last convolutional layer w.r.t a class score is computed, which is a straightforward 

extension of the original Grad-CAM.This approach permits improved exploration of the object and can 

avoid the case where one single image could have multiple instances of the same object [42]. 

8..1.2. RISE (Randomized Input Sampling for Explanation) is a visually explainable method which 

follows perturbation-based approach. The random masking of patches of an input image is central to 

evaluating the effect the patches have on a machine learning model output.This approach first generates a 

stream of binary masks that hide certain parts of the image, giving rise to a sequence of altered images. 

The model inspected each of the altered images and generated predictions, which it then used to assign 

weights to the corresponding binary masks. Multiple weighted masks combine to create the final visual 

appearance [43]. 

8.1.3. SHAP (SHapley Additive exPlanations) is an approach based on attribution principles and relies on 

game theory concepts, particularly on the Shapley values. It constructs an additive model for a local 

feature attribution that distributes an effect on to each input feature and then aggregates that effect, called 

SHAP values, to approximate the model output locally. This method treats each pixel of the input image 

as a player in a coalition game, where their inclusion or exclusion impacts the final prediction. The 

outcome of the coalition matches what the model predicts and Shapley values are used to fairly distribute 

this outcome between the pixels, using the prediction of the test sets through modified images to analyze 

each pixel's contribution . 

8.1.4. LIME (Local Interpretable Model-agnostic Explanations) [44] Such methods use perturbation 

approaches to attain visual explanations through randomly occluding regions of an input image to evaluate 

their impact on a model prediction. LIME's core idea is to create a local approximation of a model's 

behavior using a simpler one that is more interpretable around a specific instance. The first step is 

segmentation of the input image, then random masking is applied on the segments to perturb them. These 

modified images are entered into the model producing the predictions. Finally, induce simpler model to 

find visual explanation on binary masks by applying linear model (linear regressor) to binary masks for 

every perturbations, and find weights/coefficients from the simple model. 

8.1.5. SOBOL [45] It is based on attribution and uses Sobol' indices (developed by Ilya M. Sobol) which 

help in identifying how much input variables contribute to the output variability of a model. They use a 

Quasi-Monte Carlo sequence to generate a set of real-valued masks. Next, the masks are applied to an 

input image using several perturbation methods (e.g., blurring), resulting in warped copies of the image. 

The model analyzes the modified photos for prediction scores. SOBOL works by examining the relation 

between the generated masks and their corresponding prediction scores, computing the entire order of 

Sobol' indices. 
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9. Limitations and Future Directions 

 

9.1.Limitations: 

      Generalization Problem: Most deepfake detection models have issues generalizing to unobserved or 

more recent forms of GAN-generated media. GAN technology itself is evolving quickly, and models 

trained only on older datasets may not detect deepfakes created by newer methods. 

Data Dependency The effectiveness of deepfake detection models is highly dependent on the diversity 

and quality of the training dataset. A lack of diverse datasets may limit the model’s ability to accurately 

detect different kinds of deepfakes . 

Computational Complexity: Most deep learning-based detection methods, especially those involving 

complex CNN architectures, are computationally expensive, making real-time or low-resource application 

difficult . 

Dataset Limitations: Several methods have only been tested on specific datasets like CelebA or LFW, 

limiting their generalizability to other datasets with varying attributes or more diverse conditions . 

Over-reliance on Training Data: Models may overfit on specific features from training datasets, reducing 

their performance on real-world, previously unseen data. 

 

9.2.Future Directions: 

        Improving Generalization: To improve generalization, The development of models that are able to 

detect deepfakes from a wider range of GAN architectures and data conditions . 

Adaptive Models: Researchers could develop adaptive learning models that can evolve alongside 

advancements in deepfake creation techniques. These models could continually update to recognize newer 

manipulations. 

Diverse and Larger Datasets: Increasing the variety and volume of datasets used for training could improve 

model robustness. This includes incorporating different environments, lighting conditions, and demographic 

variations to simulate real-world scenarios. 

  Real-time and Low-resource Applications: Future efforts could prioritize optimizing models to work in 

real-time and in resource-constrained environments, making them more applicable for practical use in 

cybersecurity and law enforcement. 

  Multi-modal Approaches: There is potential to combine audio, video, and spatial analysis for more 

comprehensive deepfake detection. Multimodal detection methods could exploit the inconsistencies 

between visual and auditory data. 

 

10. Conclusion 

        This review examined various sophisticated methods for detecting images generated by convolutional 

neural networks and for identifying deepfake content. Present methodologies predominantly utilize deep 

convolutional neural networks (CNNs) alongside pre-processing techniques to examine the statistical 

characteristics of images. Although these methods have demonstrated impressive accuracy, numerous 

earlier studies have neglected the essential concern of generalizability, given that models are frequently 

trained and evaluated on identical datasets. To tackle this issue, innovative models like forensic CNNs have 

been introduced, employing methods such as Gaussian Blur and Gaussian Noise to improve the model’s 

capacity to differentiate between authentic and counterfeit images. By concentrating on high-frequency 

pixel noise and disregarding unnecessary low-level artefacts, these models are more adept at identifying 

deepfakes. Furthermore, networks employing a dual-stream methodology, which combines facial 

classification with low-level feature extraction, have demonstrated improved efficacy in identifying 

modified images. Transfer learning has become a potent method, enabling the application of pre-trained 

networks such as Xception, MobileNet, NAS-Net, and VGG for deepfake detection. Enhancing these 
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models with updated datasets can achieve great accuracy. Hybrid deep learning approaches, especially those 

employing paired learning, have markedly improved detection efficacy by addressing the limitations of 

traditional deepfake detection models.In summary, these varied methodologies have demonstrated 

considerable success in identifying deepfake images, attaining impressive accuracy levels. Nonetheless, the 

persistent challenge lies in enhancing the applicability of models across varied datasets and addressing the 

growing complexity of deepfake generation methods. Innovative pre-processing techniques and transfer 

learning persist in presenting encouraging pathways for the creation of more resilient and dependable 

models in the battle against image falsification. 
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