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Abstract. Artificial intelligence and deep learning in particular are now considered as promising 

methods in numerous scientific fields including medical science because the former can handle large 

amounts of data with non-linear relationships. Urinary bladder cancer is another frequent neoplasm that 

has variable histological variants and requires correct classification for the appropriate treatment tactics 

and prediction. This study proposed a Convolutional Neural Network (CNN) model that is accurate and 

simple to classifying bladder cancer, where, comparing its performance against three transfer learning 

architectures: These models include VGG16, InceptionV3, and MobileNetV2 for the two datasets that were 

used. It is seen from the experimental results that the proposed deep CNN model achieves a higher overall 

accuracy than the established transfer learning models which is 99. 5% in the final prediction and this 

makes the system suitable as a diagnostic tool for diagnosing bladder cancer. 
 

Keywords: Bladder cancer; Transfer learning; Deep learning. 
 

 

 

 

1. INTRODUCTION  

 

Bladder cancer is one of the most crucial conditions internationally affecting a large number of 

people and making a major contribution to cancer burden. The correct identification of its various specific 

histopathological subtypes plays an important role in determining the course of therapy of the disease [1]. 

It was identified that bladder cancer is among the most common types of cancer throughout the 

world and it is a significant issue for the population. The World Health Organization (WHO) captures it 

among the well-known ten universally prevalent cancers; from the evidence, there are about 550000 new 

cases annually [2]. This high incidence is therefore an indication that further efforts need to be put in coming 

up with accurate diagnosis and treatment plans for this disease. 

They are invasive, noninvasive and normal bladder tissues which are all histopathological forms in 

which the disease presents itself in. All of them needs distinct treatment methods for the best results to be 

achieved out of the therapies administered. It is especially important for the classification of these subtypes 

to be accurate and reliable to target treatment decisions that include surgery, radiation therapy, 

immunotherapy and others, and likelihood of disease progression and recurrence [3]. Bladder cancer 

primarily emerges from the lining of the bladder namely urothelium and the most common type of bladder 

cancer is urothelial carcinoma. However, a subset of BLNAs (10–25%) presents with variant histology 
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means differentiation into different types of histomorphologic form including squamous cell carcinoma, 

small cell carcinoma and adenocarcinoma. Another subtypes of high-grade urothelial carcinomas include 

micro papillary, sarcomatoid, plasmacytoid, nested and microcystic variants, these tumors diverge 

differentiating into squamous and glandular tissue. These variant histologies are quoted to be more 

aggressive, with high chances of metastasizing and are mostly unresponsive to available treatments. Several 

histological differences have been identified between these two types of cancer, which has raised questions 

over the effects of such differences on the prognosis of patients [4]. 

Appropriate staging of bladder cancer remains crucial for the enhancement of patient outcome, 

identification of high risk tumors at an early phase, and for the advancement of molecular targeted therapy. 

This in turn results in better survival rates and quality of people’s lives who suffer from this multifaceted 

illness. With every year bringing new cases of bladder cancer and the progressive development of efficient 

diagnostic and treatment plans being an urgent necessity, improvements to the accuracy of classification 

methods, which may involve the application of differential deep learning algorithms, may become the key 

to the enhancement of the abilities of users. This evolution if achieved will improve the quality of patients 

suffering from bladder cancer as well as reduce the burden across the world [5]. Another type of machine 

learning is called deep learning with the help of extensive neural networks, it is used for searching the 

numerous patterns in large data. Concerning medical imaging, it is worth noting that deep learning has made 

many practical contributions by increasing the level of precision and speed of such processes as image 

segmentation, object recognition, and feature extraction within the specificity of the given area [6]. These 

developments are significant in the classification of bladder cancer where correct identification of the cancer 

type is of utmost importance when planning for the treatment to be taken [7]. 

This paper focuses on the use of deep learning models in bladder cancer data sets with particular 

focus on CNN’s. It also looks at how Transfer Learning (MobileNet [8], VGG16 [9], InceptionV3 [10]) 

models could also be used to auto detect and extract contextual features from the medical images of 

importance in diagnosis and proper treatment planning. Furthermore, this work provides an extensive 

overview of the classification of the bladder cancer into multiple subtypes. The contributions of this study 

are as follows:  

Proposed Deep Learning Model: We present a new DL model towards the screening of BC based 

on two separate data sets. These datasets are used to train the proposed architecture and also gains 

performance metrics and compared with other transfer learning models like MobileNet & VGG16 & etc. 

Efficient Model Design: To guarantee its efficiency, the model is tested various data sets so that it 

indicates a wide applicability of the obtained results. 

High Diagnosis Rate: The architecture that is to be developed is going to enhance the diagnostic 

capacity so as to ensure that, the subtypes of the bladder cancer is classified accurately. 

Addressing overfitting and underfitting: The model takes into consideration problems of overfitting 

and under fitting than the other models leading to better performance. 

The remainder of the paper is structured as follows: Section II reviews related works by various 

authors on the topic. Section III details the materials and methods, including an explanation of CNN layers 

and feedforward networks, outlining their mechanisms. Section IV covers the TreeBank dataset description, 

experimental setup, results, findings, and data analysis. Finally, Section V presents the conclusion and 

discusses potential directions for future research. 
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2. RELATED WORKS 

 

Recent advancements in deep learning-based models have significantly enhanced automatic feature 

extraction in medical image analysis. Among these models, Convolutional Neural Networks (CNNs) are 

notably prominent, especially in classification tasks involving radiological data. 

Ann-Christin W., et al. [11], used deep learning and traditional histology slides to try and determine 

the molecular subtype of muscle-invasive bladder cancer (MIBC). The 407-person dataset, The Cancer 

Genome Atlas Urothelial Bladder Carcinoma, was used for this analysis. ResNet, short for residual neural 

network, was used in the classification testing. The deep learning technique, known as mibCNN, achieved 

an accuracy of the ROC curve by the use of novel optimization tactics during training.  

Kenny H., et al. [12], presented the AI-CALS system, which was used to divide up lesions in the 

bladder. The study used three different radiomics-based predictive models, a bridging method that extracts 

radiomics features from visual patterns, a deep learning convolution neural network (DL-CNN), and a 

radiomics feature-based strategy. Computed tomography (CT) scan data from both before and after 

treatment is used in this investigation. In the performance, the AUCs of Radiologist 1 (0.76 ± 0.08), 

Radiologist 2 (0.77 ± 0.07), RF-SL (0.77 ± 0.08), and RF-ROI (0.69 ± 0.08) were employed.  

Mohammed K., et al. [13], provided a study on the automated bladder image analysis system 

(BLIAS), which utilized the CNN architectures of Inception v3 and AlexNet. The paper included images of 

H&E-stained slides from bladder biopsies, and the precision of these images is Inception performs better 

than the others, with an average accuracy of 97%; AlexNet is second with 88%, and the stacked autoencoder 

is third with 80%.  

Audrey K. et al. [14] utilized biological classes instead of clinical classes in their study, providing a 

single-sample mRNA classifier. The consensus classification established a consistent framework for 

molecular classification, and class-specific mutations were identified using TCGA exome data.   

Constantine V. et al. [15] utilized CNN for feature extraction from histology images, leveraging data 

provided by TCGA for training. They reported AUROC values of 0.76, specificity of 0.42, and sensitivity 

of 0.89. Their model utilized TIL proportion to predict FGFR23 gene mutation in bladder cancer patients, 

analyzing 324 genes to develop a predictive model. 

Ying S. et al. [16] advocated for deep learning in automatic contouring during radiation therapy for 

rectal cancer. Employing two CNNs, DeepLabv3+ and ResUNet, they assigned ResUNet for OAR 

contouring and DeepLabv3+ for CTV contouring. Trained on original CT scans and segmentation masks, 

their models achieved Dice coefficients of 0.88 versus 0.87 (P = 0.0005) and a Surface Dice coefficient of 

0.79. 

Yang D., et al. [17], developed a deep learning application, utilizing CNN in particular, to accurately 

diagnose bladder cancer in cystoscopy images. The study collected a large number of patient images while 

achieving acceptable accuracy rates using the Caffe framework and the EasyDL platform. The main results 

were 82.9% and 96.9% accuracy rates, respectively. Application of the EasyDL model on a mobile device 

enabled accurate photo recognition of bladder cancer.   

Atsushi I., et al. [18], the purpose of the proposed article was to objectively evaluate cystoscopy 

images in order to improve the diagnosis accuracy of bladder cancer. This involved using a dataset of 

cystoscopy pictures to create and evaluate a convolutional neural network (CNN) based tumour classifier. 

The trained classifier performed effectively in distinguishing tumour images from normal images, attaining 

high sensitivity (89.7%) and specificity (94.0%). 

 

 

 

 

 



    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 4
, 

Is
su

e:
 1

, 
 M

ar
ch

, 
2
0

, 
2
0

2
5

, 
©

 2
0
2

0
 F

JI
E

C
E

, 
A

ll
 R

ig
h

ts
 R

e
se

rv
ed

  

111 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

3. BLADDER CANCER    

 

The urinary system sees bladder cancer as its most widespread form of cancer. Bladder cancer stands as 

the fourth deadliest cancer type among all tumors. Seniority rates remain high in Western nations while 

China now shows rising cases. Two main bladder cancer types exist based on tumor movement between 

bladder lining and surrounding tissues beyond the bladder walls. Treatment decisions for patients mainly 

depend on how far cancer has spread. Medical practitioners must use endoscopy findings together with lab 

test results and patient symptoms to identify between different types of bladder cancer growth. Table 1 

lists the bladder cancer medical signs and Table 2 presents its tissue diagnosis with a clear separation 

between NTL and NST cases. 
 

 

Table 1. Histopathological and Clinical features of bladder cancer. 

Feature High-Grade Non-Invasive Low-Grade Invasive (T1) 

Clinical Presentation Hematuria, urinary symptoms Hematuria, urinary symptoms 

Histopathology Cellular atypia, high mitotic rate, disorganized 

urothelium, CIS 

Less cellular atypia, orderly architecture, fewer 

mitotic figures 

Endoscopic 

Appearance 

Flat, erythematous patches, mucosal irregularities Papillary or nodular lesions, well-defined masses 

 

 

Table 2. Differentiation of NTL and NST 

Feature No Tumor Lesion (NTL) Non-Suspicious Tissue (NST) 

Clinical 

Presentation 

Dysuria, frequency, urgency, suprapubic pain Asymptomatic or non-specific symptoms 

Endoscopic 

Appearance 

Diffuse erythema, edema, hemorrhagic spots, thickened 

mucosa, fibrosis, ulceration 

Smooth, pale pink mucosa, uniform color, 

normal vasculature pattern 
 

 

 

4. MATERIALS AND METHODE    

 

4.1. MATERIALS (DATASET) 

 

In this study, two distinct datasets as shown in Figure 1 were used to train and evaluate the proposed 

deep learning model for bladder cancer diagnosis. These datasets include a proprietary collection developed 

at Zagazig University in Egypt, and a set of endoscopic images from patients undergoing clinical 

procedures. The comprehensive details of these datasets are as follows: 

 

1- Proprietary Dataset:  

The research team at Zagazig University in Egypt built this exclusive dataset under IRP approval 

11044-22-8-2023. This dataset consists of 2,629 pathological images categorized into three classes: non-

invasive malignant, invasive malignant, and normal bladder mucosa, which serves as a standard for deep 

learning measurement [20]. 

 

2- Endoscopic Dataset:  

The second dataset includes 1754 endoscopic images taken during Trans-Urethral Resection of 

Bladder Tumor procedures for 23 patients. Researchers drew their labels from medical evaluations of the 

tissue that surgeons removed. During endoscopy White Light Imaging (WLI) technology serves as the 

baseline while Narrow Band Imaging (NBI) is used when accessible. This dataset is categorized into four 

classes following, by the World Health Organization WHO and the International Society of Urological 
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Pathology guidelines: The data set groups Bladder tissue into three main types including Low-Grade Cancer 

(LGC), High-Grade Cancer (HGC) with No Tumor Lesion (NTL) comprising cystitis and related 

inflammatory conditions plus Non-Suspicious Tissue (NST)[21]. 

 

 

 
(a) 

 
(b) 

Fig. 1. Examples of histological and endoscopic: (a) Samples of data set1 [20], (b) Samples of data set2 [21]. 

 

 

Table 3 categorize a dataset of cases into different classes with a corresponding number of cases in 

each class. Specifically, it lists two distinct data sources identified as dataset 1 and dataset 2. Each dataset 

contains multiple classes, each with a certain number of cases. For instance, dataset 1 includes classes like 

"Non-invasive", "Invasive", and "Normal" with the respective count of 660, 1178, and 454 cases, 
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respectively. Similarly, dataset 2 enumerates cases under 'LGC', 'HGC', 'NTL' and 'NST' with counts of 647, 

469, 134 and 504, respectively. Figure 2 shows examples of histological and endoscopic data sets, where 

"a" shows various histological slides as anexamples of data set1, . These slides include different types of 

tissue sections stained with various dyes, such as haematoxylin and eosin (H&E) and other staining 

methods. Histological images are crucial for examining the microscopic structure of tissues, aiding in the 

diagnosis and study of diseases, particularly cancer. Endoscopic images as an examples of data set2 are 

shown in (b). These images are captured using an endoscope, a specialized medical instrument equipped 

with a camera allowing internal visualization of an organ or tissue. Endoscopic imaging is commonly used 

for diagnosing and monitoring conditions within the gastrointestinal tract, respiratory system, and other 

internal structures. Both types of data sets are vital in medical research and diagnostics, providing 

comprehensive views from the cellular to the organ level. The datasets undergo pre-processing, including 

image scaling by normalization to [0, 1], before being divided into subsets for training, validation, and 

prediction. 

 
Table 3. Classification of cases in dataset 1 and dataset 2 across multiple classes. 

Material Class No. of Cases 

Dataset 1 

Non invasive 660 

Invasive 1178 

Normal 454 

Dataset 2 

LGC 647 

HGC 469 

NTL 134 

NST 504 

 

4.2. METHODS (THE SUGGESTED MODEL) 

 

The proposed system utilizes a Deep Neural Network structured on CNN architecture and is 

juxtaposed with transfer learning models like MobileNetV2, Inception V3, and VGG16 to determine the 

optimal system for diagnosing bladder cancer. The sequential stages of the suggested system are delineated 

in Figure 2, encompassing pre-processing, training, validation, testing, and result interpretation for efficient 

classification of medical datasets. 
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Fig. 2. The proposed system. 

1) Convolutional Neural Network 

A convolutional neural network (CNN) is a type of deep learning network inspired by artificial 

neural networks. CNNs are typically structured as a series of stages composed of different layers. 

Essentially, a CNN is a multi-layer network consisting of five main layers: the input layer, convolutional 

layer, pooling layer, fully connected layer, and output layer. The convolutional layer contains multiple 

feature maps, which are generated by convolving the convolution kernel from the previous layer, as follows 

[19]: 

𝑋# = 𝑓[∑ (𝑋𝑙−1

𝑖∈𝑀𝑗

∗ 𝐾𝑖𝑗
𝑙 + 𝑏𝑗

𝑙)]          (1) 

Where: 

𝑀𝑗: Represents the input image.  

𝑋#: the jth features map of the lth layer.  

*:  the convolution operation.   

𝑋𝑙−1: Is the ith features map of the 𝑙 − 1 layer.   

𝐾𝑖𝑗
𝑙 : the filter connecting the jth feature map of the lth layer and ith features map of the 𝑙 − 1 layer.  

𝑏𝑗
𝑙: Is the bias.  

The CNN model employed in this study comprises a series of layers defined using the Sequential 

class. Table 4 depict the detailed architecture of the proposed Deep Neural Network based on CNN, 

emphasizing the sophisticated network design tailored for precise and dependable bladder cancer 

classification. The layer breakdown includes [19]: 

• Rescaling: Normalizes input pixel values to [0, 1] by dividing by 255. 

• Conv2D: Applies 2D convolution with 16 filters, a 3x3 kernel, 'same' padding, and ReLU 

activation (f(x) = max (0, x)) to extract 16 features. 

• MaxPooling2D: Performs max pooling to down sample feature maps from the previous layer. 
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• Additional Layers: Adds two more Conv2D and MaxPooling2D layers with 32 and 64 filters to 

capture more complex features. 

• Flatten: Converts the output from the previous layer into a 1D vector for the fully connected 

layers. 

• Dense: Creates a fully connected layer with 128 units and ReLU activation to identify complex 

patterns, followed by another Dense layer with num_classes units for final classification using a 

SoftMax classifier:  

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝐽𝐾
𝑗=1

                                                     (2)  

Table 4. The proposed CNN layers and parameters. 

Layer Input Size Output 

Size 

Filter 

Size 

(FS) 

No. of 

Parameters 

Input 224x224x3 224x224x3 - 0 

Rescaling 224x224x3 180x180x3 - 0 

Conv2D 180x180x3 180x180x16 3x3 448 

MaxPooling2D 180x180x16 90x90x16 - 0 

Conv2D 90x90x16 90x90x32 3x3 4640 

MaxPooling2D 90x90x32 45x45x32 - 0 

Conv2D 45x45x32 45x45x64 3x3 18496 

MaxPooling2D 45x45x64 22x22x64 - 0 

Flatten 22x22x64 30976 - 0 

Dense 30976 128 - 3965056 

Dense 128 3 - 387 

 

 

2) Transfer Learning: 

Transfer learning is a machine learning technique where a model developed for one task is reused 

as the starting point for a model on a second task. This is particularly useful when you have a limited amount 

of training data for the second task [23]. Transfer learning is particularly useful in computer vision tasks, 

where the low-level features (e.g., edges, shapes) learned by a CNN model on a large dataset like ImageNet 

can be effectively reused for a wide variety of image classification, object detection, or segmentation tasks. 

1- VGG16 is a deep learning model that is categorized under the Convolutional Neural Network or 

the CNN family of model and it was created by researchers at the University of Oxford’s Visual 

Geometry Group (VGG). It was introduced in 2014 and has since then been widely used for 

transfer learning in tasks concerning computer vision. It is evident that VGG16 has a total of 16 

weight layers in its architectures: 13 convolutional layers, 5 pooling layers and 3lrntotally fully 

connected layers. 

2- MobileNetV2 is a convolutional neural network which was designed rating a Google in 2018. It 

is a modified version of the MobileNet structure and is optimal for usage in mobile as well as 

the embedded systems [8]. 

3- Inception-v3 is the new improvement from the Goggle original architecture known as GoogleNet 

or Inception-v1 network. It was proposed in 2015 and it is one of the most complex Inception-

based model in group of Inception models. Inception-v3 contains a total of 48 layers which does 

not include the final average pooling layer as well [10]. 
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5. EXPERIMENTAL RESULT AND ANALYSIS 

 

        The proposed deep learning algorithms (CNN, VGG16, InceptionV3, and MobileNetV2) were 

assessed using two datasets: 2,629 pathological images and 1,754 endoscopic images, with each dataset 

comprising 70% of the total data. The data was split into 70% for training, 15% for validation, and 15% for 

testing to evaluate the model's generalizability and prediction ability on unseen data. A random selection of 

training and validation images was used for better evaluation over 10 epochs. The experiments were 

conducted on a personal computer using Python on a Windows 10, 64-bit operating system. Performance 

metrics, specifically accuracy, were employed to assess the models as shown in Eq. (3). The highest 

accuracy achieved by CNN was 99.78%, with a training accuracy of 98.04% using the endoscopy dataset, 

as shown in Table 5. For the second dataset, the best accuracy achieved was 98.5% by CNN, as detailed in 

Table 6. Additionally, there was no significant difference between training and validation accuracy when 

using CNN, indicating no overfitting, as shown in Fig 3, and 4 for both datasets. In contrast, methods like 

VGG16 showed a clear difference between training and validation accuracy, indicating overfitting, as seen 

in Fig. 5. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                               (3) 

 
Table 5. The result of dataset 1 (endoscopy) using CNN, InceptionV3, VGG16, and MobileNetV2. 

Method 
Training Validation Precision Sensitivity 

(Recall) 

F1 Score 

Loss Accuracy Loss Accuracy 

InceptionV3 5.00 0.97 5.35 1.00 0.93 0.93 0.93 

VGG16 0.02 0.92 0.01 1.00 0.92 0.92 0.92 

MobileNetV2 2.45 0.95 1.92 1.00 0.94 0.94 0.94 

Proposed  CNN 0.06 0.98 0.01 0.99 0.97 0.97 0.97 

 

 

 

Table 6. The result of dataset 2 (pathological images) using CNN, InceptionV3, VGG16, and MobileNetV2. 

Method 
Training Validation 

Precision Sensitivity 

(Recall) 

F1 Score 

Loss Accuracy Loss Accuracy    

InceptionV3 0.11 0.96 0.93 0.93 0.99 0.94 0.96 

VGG16 0.22 0.93 0.92 0.92 0.95 0.95 0.95 

MobileNetV2 0.00 0.97 0.94 0.94 0.89 0.90 0.90 

Proposed  CNN 0.04 0.98 0.97 0.97 0.98 0.97 0.94 

 

The results in Tables 5 and 6 compare the performance of InceptionV3, VGG16, MobileNetV2, and the 

proposed CNN across training and validation phases. The proposed CNN consistently achieves a strong 

balance between low training loss and high accuracy, outperforming the other models in F1 score (0.97) on 

both datasets, indicating superior generalization and adaptability. While VGG16 shows low training loss 

and high accuracy, it may overfit, and MobileNetV2 demonstrates good precision but lower sensitivity. 

InceptionV3 performs steadily but is surpassed by the proposed CNN in precision and F1 score. These 

findings emphasize the robustness and versatility of the proposed CNN across varied datasets. 

To address overfitting and under fitting, we implemented several techniques, including dropout 

regularization, data augmentation (e.g., rotation, flipping, and scaling), early stopping, and L2 

regularization. Additionally, k-fold cross-validation was used to ensure robust performance across data 

subsets. 
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Fig. 3. Comparison of training and validation accuracy for the proposed CNN on dataset 1. 

 

 
 

Fig. 4. The difference between training and validation accuracy for the proposed CNN on dataset 2. 

 

  
Fig. 5. Discrepancy between training and validation accuracy for VGG16. 

 

 



    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 4
, 

Is
su

e:
 1

, 
 M

ar
ch

, 
2
0

, 
2
0

2
5

, 
©

 2
0
2

0
 F

JI
E

C
E

, 
A

ll
 R

ig
h

ts
 R

e
se

rv
ed

  

118 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

6. CONCLUSIONS 

 

The paper presents a deep learning model for accurately classifying bladder cancer subtypes, which 

is crucial for effective treatment planning and prognosis. The proposed Convolutional Neural Network 

(CNN) model is introduced as an efficient and reliable tool for bladder cancer diagnosis. A comparative 

performance analysis was conducted between the proposed CNN model and three state-of-the-art transfer 

learning architectures: These include VGG16, InceptionV3, and new MobileNetV2. From the experimental 

results it was realized that our proposed CNN model attained the best overall accuracy of 99%. Further, in 

the final prediction process, just 5% of the intuition was incorporated into the algorithm. The study also 

faced problems of both overfitting and underfitting and tried to avoid them while creating the model which 

has the same effectiveness when used with different datasets. The simple structures of CNN architecture 

allowed for extraction of features within the medical images of cognitive and intricate natures in order to 

improve the understanding of clinicians. The outcomes of this study can be added as a reference to the 

research promoting the application of state-of-the-art deep learning methodologies in medical image 

comprehension and especially in classification of complicated types of cancer such as bladder cancer. It 

may follow the expansion of the model and the investigation of the applicability of the data in larger datasets 

and including other populations, or including the integration of the data into practice strategies, and applying 

it to patient care in the future research areas. All in all, all the deep learning algorithms have some useful 

features for the classification of bladder cancer. Specifically, it is worthwhile to point the attention to custom 

CNNs as they demonstrated high accuracy and comparatively low computational costs that allow using 

them for most of medical imaging tasks. The hi-accuracy models such as VGG16 and InceptionV3 can 

however be considered better where a lot of computation power can be afforded and highest possible 

marginal improvement obtained. MobileNetV2 is perfect suitable for applications which requires real time 

performance. To ensure practical application in clinical settings, our model must seamlessly integrate with 

electronic health record (EHR) systems and be user-friendly for clinicians. Enhancing model interpretability 

through visualization techniques like Grad-CAM is crucial for building trust. Additionally, compliance with 

regulatory standards and ethical guidelines is essential for safe implementation. Extensive validation on 

multi-institutional clinical datasets will ensure the model’s reliability, while addressing resource and 

computational constraints will facilitate deployment in diverse healthcare environments. 
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