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Abstract. The adoption of IoT technology in universities has significantly improved campus security, 

emergency response, and control systems, particularly through IoT-based surveillance and fire detection 

systems. Traditional fire detection systems suffer from high false alarm rates, leading to unnecessary 

resource allocation. This paper proposes an intelligent fire detection system leveraging IoT and adaptive 

fuzzy systems to enhance accuracy and reduce false alarms. The system uses sensors to collect real-time 

data, which is analyzed by an Adaptive Neuro-Fuzzy Inference System (ANFIS) to determine alarm levels 

based on input severity. ANFIS combines fuzzy logic and neural networks, enabling learning and 

adaptation. Data analyzed by ANFIS is sent to ThingSpeak channels for real-time monitoring. When a fire 

is confirmed, alerts with fire location, timestamp, and severity are sent via SMS through GSM to the fire 

management system. The system utilizes cost-effective, small-sized sensors, ensuring repeatable solutions. 

After training, the ANFIS system achieved 99.59% accuracy, significantly reducing false alarms. It 

demonstrated faster detection times by reducing the fire detection rate by 28% and maintaining high 

detection accuracy with fewer sensors, training inputs, and epochs. Utilizing IoT and ANFIS technologies, 

the system integrates efficiency, speed, and reliability, protecting lives and property and highlighting the 

importance of safety and technology in serving humanity. 
 

Keywords: ANFIS, IoT, fire detection, fire alarm, training, Smart Campus. 
 

 

1. INTRODUCTION  

 

Fires pose a serious threat to universities, as they can cause property damage, injuries, and loss of 

life [1]–[3 These fires not only result in financial losses but also disrupt academic activities and pose a threat 

to student safety, faculty, and staff. In addition, traditional fire detection systems used in universities often 

rely on manual inspection or basic smoke and heat detectors [4], [ 5 Adaptive Neuro-Fuzzy Inference 

System (ANFIS)-Internet of Things (IoT) integrated detection targets of the proposed fire system in order 

to overcome these limitations. Currently, universities rely on traditional fire detection systems that are often 

inaccurate and inefficient [6]–[10].  These policies increase false alarms, disturbed departures, and student 

anxiety [11].  Thus, universities must have a reliable fire detection system. The IoT revolution has 

significantly impacted our lives by enabling devices to connect and communicate, increasing productivity 

and convenience [12], our proposed system by integrating ANFIS technology with IoT sensors aims to it 

will significantly increase the accuracy of fire detection in university buildings. Moreover, the integration 

of ANFIS technology with Internet of Things (IoT) sensors allows for real-time monitoring and data 

analytics [14]–[16], besides enabling early fire detection, the system can reduce false alarms and enable 

timely reporting to appropriate personnel, which enables faster response and reduces fire risk. 

422 

https://doi.org/10.46649/fjiece.v3.2.28a.7.6.2024


    

                            

 

A
T

U
-F

JI
E

C
E

, 
V

o
lu

m
e:

 3
, 

Is
su

e:
 2

, 
 J

u
n
 7

, 
2

0
2
4

, 
©

 2
0
2

0
 F

JI
E

C
E

, 
A

ll
 R

ig
h

ts
 R

e
se

rv
ed

  

 

 

 

 
 

Al-Furat Journal of Innovations in Electronics and Computer 

Engineering (FJIECE) 

ISSN -2708-3985 

 

 The researchers in [17], utilized sensors to measure temperature and carbon monoxide levels. They 

utilized a Probabilistic Neural Network (PNN) without specifying the accuracy. The researchers in [18] 

conducted a study using a variety of sensors including those for gas, temperature, humidity, smoke, and 

heat. The Directional Prediction Neural Network (ΤΡΝΝ) was employed with an accuracy of 99%, where 

cloud computing or the GSM was not utilized. In [19],  a range of sensors was used to measure different 

levels of CO2, CO, smoke, humidity, LPG, and air temperature, where the K-Nearest Neighbors (KNN) 

Algorithm was used with an accuracy of 99.71%. The researchers in [11],  conducted a study using sensors 

for smoke, temperature, humidity, and flame. They relied on the ANFIS without specifying the accuracy. 

The researchers in [20],  used sensors for fire, smoke, and temperature detection. They utilized Sugeno 

Fuzzy Logic without specifying the accuracy. The researchers in [21], conducted a study using sensors for 

temperature, smoke concentration, and CO levels. They utilized a Backpropagation Neural Network 

(BPNN) with an accuracy of 99.4%. The researchers in [22] 2022 conducted a study using sensors for 

gas/smoke, temperature, and humidity. They utilized a Support Vector Machine (SVM) with an accuracy 

of 99.83%. The researchers in [23], conducted a study using sensors for gases, smoke, and temperature. 

They utilized Support Vector Classification with an accuracy of 90%. The researchers in [24], used sensors 

for smoke, duration, and temperature detection. They utilized Support Vector Classification with an 

accuracy of 90%. The researchers in [24], used sensors for smoke, duration, and temperature detection. 

They utilized Mamdani Fuzzy Logic without specifying the accuracy. All research in the above literature 

did not consider cloud computing or  Global System for Mobile (GSM) warnings in their research. 
 

 Despite the accuracy of research [19], [22] in training its members, it lacks the reliability and 

effectiveness of the sensors used. 

Smoke detectors are designed to detect fires when they are blazing or in the early stages of fire or 

flame and typically, flame detectors respond faster and more accurately than thermal smoke detectors [5]. 

In this work, the SGP30 sensor was chosen because it has proven its effectiveness among many sensors for 

fire detection through gas and smoke sensing according to this study [25]. For flame and temperature 

detection, the AMG8833 sensor to more reliable.  

 While cameras can be valuable tools in fire detection and detection systems, they also have their 

disadvantages Limited visibility, Vulnerability to environmental conditions, complexity of analysis, Privacy 

concerns, and High cost [5]. 
 

 

2. MATERIALS AND METHODS 

 

2.1. Architecture of Proposed FAMS 

 

The diagram below in Figure 1 shows the structure of the proposed system for early fire detection 

and warning. The system includes sensors that collect data such as TVOC, CO2, and flame, which are input 

as linguistic variables to the ANFIS fuzzy system. The system will be trained on data from previous 

experiments to determine the severity of the fire based on the input values.  The sensor data and fire severity 

are then sent over the internet to the ThingSpeak cloud for monitoring and taking necessary action based on 

the resulting fire severity. This includes the ability to alert occupants inside the building and send messages 

via the internet or communication system to firefighters to request additional assistance with the internal 

firefighting system. 

 

The system consists of three phases: 
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            The first phase involves the design of the hardware devices and the configuration of the sensor 

nodes. The second phase involves MATLAB simulation to train the ANFIS fuzzy system, and the final 

phase involves programming and configuring the algorithm to integrate the system Diagram. 

The workflow of the proposed FAMS is visually represented in the accompanying  Figure 2, outlining the 

sequential steps involved in the system's operation. 

Explanation of Figure 1 The operation of the fire alarm system begins with the detection of a fire using 

various types of detection devices, such as smoke and gas detection sensors, which detect the presence of 

smoke particles and gas in the air, and heat and flame detection sensors, which measure the temperature of 

the flame thermally using infrared rays. When a fire is detected, the detection devices send a signal to the 

central control panel, which processes the signal, determines the exact location and time of the fire, and 

then sends the data to the cloud via the Internet. The fire data is stored in the cloud, where it can be analyzed 

to understand fire patterns and take necessary actions to control the fire. Subsequently, necessary decisions 

can be made, and alerts can be sent to various receiving devices through the cloud. SMS alerts are sent to 

nearby fire stations and relevant personnel. Audible and visual alarm devices are activated to inform 

individuals of the fire, and safety systems are activated to extinguish fires as quickly as possible, such as 

spray systems that release water or chemicals to extinguish the fire. 

 

2.2. Used Hardware in Proposed FAMS 

 

Figure 1 The architecture of the fire alarm system. Figure 2 flowchart of FMAS 
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In the hardware design and setup aimed at detecting the chance of fire by reading flame and smoke 

sensors, we used an ESP32 Arduino module to connect and integrate the AMG8833 sensors with the SGP30 

sensor. This enabled us to accurately collect basic data regarding the presence of flame, total VOCs, and 

eCO2 levels. To ensure smooth integration of the AMG8833 and SGP30 sensor with the ESP32 Arduino 

module, we carefully followed the following steps: 

 

1. The Arduino IDE program and libraries necessary for the ESP32 on our computer are installed. 

2. We connected AMG8833 and SGP30 to the corresponding pins on the ESP32 Arduino module  as 

shown in Figure 3. 

3. A program was developed in the Arduino IDE to retrieve data from the connected IR flame sensors 

and the SGP30 sensor. This program includes code to collect data, process data, and display results. 

In addition, it contains code to establish a connection with ThingSpeak, enabling data to be 

transmitted for display on its interface. 

 

By diligently adhering to these steps, we have seamlessly integrated IR flame sensors and the SGP30 sensor 

into our IoT project, enhancing our ability to effectively monitor and detect fire sources. The sensors and 

related items were placed inside a box containing all the practical parts, as shown in Figure 4. 

 

Figure 3 Connect AMG8833 and SGP30 to the corresponding 

                     pins on the ESP32 Arduino module. 

 

2.3. Used Software in Proposed FAMS 

 

    The following sections detail everything related to implementing the software for the proposed system. 

 

2.3.1.  Collect and structure the database 

    To collect and structure the database, the data comprises a comprehensive set of values related to inputs 

and outputs, focusing on key inputs such as eCo2, TVOC, and IR flame. Fire experiments were conducted 

covering various scenarios, including the burning of wood, plastic, fabrics, cardboard, paper, electricity 

wires, and other commonly used materials, in a realistic environment reflecting fire challenges. These 

Figure 4  Box containing all the practical parts 
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experiments were conducted in a room with precise dimensions of 4 meters in length, 4 meters in width, 

and 3 meters in height, ensuring an accurate testing environment. Essential sensors were installed in the 

middle of the ceiling, ensuring high capability in monitoring and measuring environmental variables as 

shown in Figure 5. 

    

 

 

The software code included in the ESP32 board obtains the sensor readings and displays them in a 

spreadsheet, as shown in Table 1. Table 1 shows a sample of real-time data collected for the experiment 

using the Arduin in an Excel spreadsheet. In the absence of a fire, the sensors’ reading of the environment 

is variable and has unstable values at the beginning of operation in relation to a real environment due to the 

high sensitivity of the sensors. After collecting the initial data from the different sensors, the basic steps of 

data analysis include determining warning levels by setting warning thresholds for each measured value for 

different types of burning materials, as shown in Table 2. 

 

 

Figure 5 Fire experiment room to collect real data for the database. 
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Table 1: Samples of Real-Time Data Gathered from 

Experimentation 

 

TIME ECO2(PPM) 
TVOC 

(PPM) 

IR 

FLAME(°C) 

05:19:17 PM 400 0 25.25 

05:19:18 PM 408 5 25.5 

05:19:19 PM 402 8 25.75 

05:19:20 PM 406 11 25.75 

05:19:21 PM 416 19 26 

05:19:22 PM 417 22 25.5 

05:19:23 PM 414 17 25.5 

05:19:24 PM 425 26 25.25 

05:19:25 PM 426 30 25.25 

05:19:26 PM 434 32 25.5 

05:19:27 PM 433 39 25.75 

05:19:28 PM 434 36 25.25 

05:19:29 PM 438 42 25.25 

05:19:30 PM 452 54 25.5 

05:19:31 PM 444 54 25.75 

05:19:32 PM 450 55 25.75 

05:19:33 PM 457 65 25.5 

 
 

 

Table 2: Determining warning levels for each measured  

for the different types of burning materials 

 
MATERIAL 

TYPE 
ALARM 

LEVEL 
ECO2 

TVO

C 

IR 

FLAME 

 

CARDBOARD 
0 400 0 25.75 

1 534 201 25.75 

2 845 528 26.5 

 

FABRICS 
0 400 0 26 

1 712 199 26.25 

2 1093 509 26 

 

WOOD 
0 400 0 26 

1 698 200 28 

2 1272 510 29 

 

PLASTIC 
0 400 0 25.75 

1 652 240 26.25 

2 752 712 26.5 

 

PAPER 
0 400 0 25.5 

1 704 222 26.75 

2 858 514 25.5 

 

ELECTRICIT

Y WIRES 

0 400 0 27.5 

1 759 251 25 

2 776 506 25.25 

 

FABRICS 
0 400 0 24.75 

1 1000 365 26.25 

2 1317 535 26.25 

    

Next comes the preprocessing of the data, where data cleaning involves removing any missing, 

contradictory, or noisy values. Then take the difference between the current reading and the reading 2 

minutes ago. For the system to adapt to all indoor environments. Then, data normalization is performed to 

convert all values to a unified range, typically from 0 to 1. Subsequently, the data is divided into two sets, 

the training set used to train the ANFIS model and the test set used to evaluate the model's performance. 

Out of the total dataset, which consists of approximately 2000 measured values, 80% is allocated for training 

data and 20% for testing data. 

    The purpose of the preprocessing step is to ensure data quality and accuracy before using it for training. 

Furthermore, dividing the data into discrete groups (training and testing) helps prevent overfitting of the 

model. Table 3 shows the data processed and prepared for training. 

 

2.3.2.  ANFIS for Intelligent Fire Detection. 

 

    In fire detection, ANFIS is emerging as a powerful technique, converting raw sensory information into 

actionable fire detectors. This intelligent system overcomes the limitations of traditional methods and 

provides a dynamic and adaptive solution for real-time fire management. 

    At their core, ANFIs effectively blend the power of ambiguity and neural connections. Fuzzy logic 

enables the system to deal with inherent uncertainties and mismeasurements common in fire situations. 

Neural networks now introduce variable learning capabilities, enabling the system to refine its 

understanding of fire patterns based on real-time data This network enables ANFIS to generate robust 

relationships between three critical components between intrusion and fire hazard is well illustrated. After 
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providing the ANFIS system with training data and determining the number of MF for each input function, 

the model structure for the ANFIS system can be observed as shown in Figure 6. This allows an 

understanding of how to build and configure the final model of the ANFIS system. 

 
Table 3: Data After Processing and Preparing it for 

Training. 

 

eCO2 

(INPUT 1) 

TVOC 

(INPUT 

2) 

IR 

FLAME 

(INPUT 3) 

ALARM 

LEVEL 

(OUTPUT) 

0 0 0.0625 0.25 

0.25 0.635 0.19 0.75 

0.085 0.028 0 0.25 

0.089 0.044 0.0025 0.25 

0.185 0.284 0.0025 0.5 

0.338 0.376 0.035 0.5 

0.535 0.995 0.045 0.75 

0.312 0.199 0.0025 0.5 

0.033 0.039 0.0075 0.25 

0.23 0.64 0.185 0.75 

0.224 0.306 0.0025 0.5 

0.077 0.188 0.02 0.25 

0.017 0.022 0.005 0.25 

0.499 0.6 0.0175 0.75 

0.046 0 0.02 0.25 

0.241 0.566 0.1975 0.75 

0.09 0.055 0.0075 0.25 

 

 

 

 

ANFIS seamlessly merges its data, enriching its understanding of fire dynamics. Each of these input features 

is meticulously processed through Gaussian MF. These functions translate the crisp numerical data into 

fuzzy sets, representing degrees of membership (low, medium, high) for each variable. This fuzzy 

representation allows ANFIS to handle the inherent ambiguity and uncertainty associated with fire 

detection. 

 

The input data is processed using the ANFIS technique to generate the desired alert level based on the input 

data. ANFIS assigns weights to the input data and correlates it with fire detection outcomes, in real time, 

by integrating fuzzy interference and neural networks into the smart fire detection and monitoring system. 

The resulting fuzzy interference model is displayed in Figure 7. The Trapezoidal form of MF is employed 

to validate the three fundamental inputs as displayed in Figure 8. 

 

Figure 6 The ANFIS structure 

Figure 7  Fuzzy interference model 
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𝜇(𝑥) =

{
 
 
 
 

 
 
 
 

 

 0.                               𝑥 <  𝑘1
 

𝑥 − 𝑘1
𝑘2 − 𝑘1

.                    𝑘1 ≤ 𝑥 ≤ 𝑘2
 

     1.                           𝑘2 ≤ 𝑥 ≤ 𝑘3
 

𝑘4 − 𝑥

𝑘4 − 𝑘3
.                   𝑘3 ≤ 𝑥 ≤ 𝑘4

 
0.                                𝑥 > 𝑘4

  

 

 

 

The MF plots for D-eCO2 (The difference between the current reading and the reading 2 minutes ago), D-

TVOC, and D-IR Flame are in Figures (9, 10, 11), respectively. 

 

 

    After defining the input and output MF, the training process automatically generates a set of rules. The 

training process requires the implementation of the Sugeno method to train the fuzzy linguistic labels. The 

ANFIS was provided with the Training.dat file, which contains the training data collected from the sensors. 

After successful training, the system generated 48 rules. The generated rules are shown in Figure 12, which 

illustrates different fire parameters based on the "AND" operator. The ability to delete, add, and modify 

rules. For the ANFIS training command to work, the initial FIS structure must have a rule for each output 

MF; that is, the number of output MF must equal the number of rules. 

Figure 8 The Trapezoidal form of MF 

Figure 9 D- eCO2 MF plot Figure 10  D- TVOC  MF plot 
Figure 11 D- IR Flame MF plot 
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Figure 12 ANFIS generated rules. 

 

2.3.3.  ThingSpeak cloud 

 

We have created a ThingSpeak channel to display eCO2, TVOC, Flame, and Fire Chance. Table 4 shows 

the details of our channels on the ThingSpeak account. 

 
Table 4: Details of Our Channel on The Thingspeak Account 

 

Channel name 
Fire Alarm and Monitoring 

System 

Channel ID 2272770 

Author enghlf360 

Access Public/private 

 

ThingSpeak uses secure HTTP/HTTPS protocols over the internet. We use this cloud-based platform to 

analyze data live, where we collect, view, and analyze it continuously. 

 

3. RESULTS AND DISCUSSION 

 

3.1. results of ANFIS training 

 

The FAMS training and testing help with data that shows what real fires look like and what other 

events that may resemble a fire look like. This training helps the system become smarter at distinguishing 

real fires, allowing it to send early warnings only when there is a real danger. The ANFIS system was trained 

on a dataset collected from fire experiments conducted on various materials. The best results were achieved 

by setting the MF to four for the first input, four for the second input, and three for the third input while 

increasing the number of epochs to 20. The training showed the best outcomes when the number of epochs 

was set to 20, resulting in 48 rules with an error rate of 0.0042 and a system accuracy of 99.58%. Figure 4.2 

illustrates the training and testing results of the system, showing the accuracy of correctly identifying the 

warning levels—first, second, or third. Figure 4.2 depicts a correct output with a plus sign (+) and the 
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system's output after training with a multiplication sign (*), demonstrating the system's accuracy in 

identifying the correct warning and risk levels corresponding to different input scenarios. 

 

Figure 13 Average testing results. 

3.2. Actual test results for FAMS 

 

After completing the early fire detection system and conducting practical experiments on it, testing it on 

fires of various materials, the results of the practical tests are clarified in the following sections: 

 

3.2.1.  Results of detection of fires 

 

The results of distinguishing between real fires and false alarms demonstrate the accuracy and reliability of 

the fire detection system in differentiating genuine incidents from situations that might trigger false alerts. 

This analysis aids in evaluating the system's effectiveness in minimizing unnecessary disruptions and 

ensuring a swift response to genuine fire emergencies. Figure 4.6 illustrates the outcomes of actual fire 

detection for various materials. 

 

 

Figure 14 Outcomes of actual fire detection for various materials. 
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Figure. 14 illustrates the determination of the alarm level based on the level of danger using the data from 

the three inputs. Initially, the danger level is zero, indicating no risk before the fire starts or is detected. At 

the onset of the fire at second 33, only smoke and organic compounds are detected before the flames become 

visible. Sensors for eCo2 and TVOC begin recording until second 37 when the flames start to rise. At second 

42, with an increase in the flame temperature recorded by the IR flame sensor, reliable early fire detection 

is made, prompting the alarm level to be set to the first level for early fire detection. 

 

The inputs continue to increase, indicating the fire's persistence until second 47, where readings of eCo2, 

TVOC, and flames reach a high level, approaching danger. Consequently, the alarm level is raised to the 

second level, indicating fire hazards due to flame temperature and air pollution from smoke and hazardous 

volatile organic compounds. Between seconds 51 and 63, eCo2 and TVOC readings begin to decrease, but 

the flame readings remain elevated, maintaining the alarm level at the second level due to continued danger. 

After second 65, with increased readings, the alarm level is raised again to the second level, indicating fire 

hazard, until the final second. 

 

3.2.2. Fire Detection Times for Different Material Types 

 

Table 5 shows the fire detection times for various material types at two different levels. The time is measured 

in seconds, and the table highlights the differences in fire detection speed based on the type of material and 

the level. This analysis helps to understand which materials require more time to detect fire, which can have 

a significant impact on fire prevention and safety strategies. 

 
Table 5: Validity of detection and detection time for the system 

 

Scenario Material type 
Detecting fire by 

FAMS 

Fire Detection Time (s) The real 

situation Level (1) Level (2) 

1 cardboard Yes 26 33 fire 

2 fabrics Yes 50 68 fire 

3 wood Yes 139 155 fire 

4 plastic Yes 149 172 fire 

5 paper Yes 25 30 fire 

6 electricity wires Yes 164 186 fire 

7 cigarette smoke No - - No fire 

8 Gas leak No - - No fire 

9 Water vapor No - - No fire 

10 Air dust No - - No fire 

11 Light the candles No - - No fire 

 

The table indicates that there is a variation in fire detection times among different material types across the 

two levels. On average, electricity wires, plastic, and wood are among the materials that take longer to detect 

fire, posing a greater risk in emergencies. On the other hand, paper and cardboard are detected more quickly. 

 

 

3.2.3. Monitoring On Thingspeak and Alarm 

 

    Monitoring the system via the Thankspeak cloud, as shown in Figure 15, is straightforward. 
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➢ eCo2 chart illustrating the distribution of eCo2 values from the SGP30 sensor, with eCo2 values on 

the vertical axis and time of measurements on the horizontal axis. 

➢ TVOC chart displaying the distribution of TVOC values from the SGP30 sensor, with TVOC values 

on the vertical axis and time of TVOC measurements on the horizontal axis. 

➢ IR Flame chart providing the distribution of flame temperature values from the AMG8833 sensor, 

with flame temperature on the vertical axis and time of temperature measurements on the horizontal 

axis. 

➢ Alert Level chart determining the warning or danger level from the ANFIS system based on three 

inputs, with the danger level and alert level on the vertical axis and the time of determining these 

levels on the horizontal axis. 

3.2.4. Alarm SMS 

 

    Upon the detection of a fire and the determination of its level of danger or alert, an SMS message is 

received via the GSM network from one of the telecommunication companies in Iraq. The message contains 

detailed information about the fire location, including the specific floor and room, as well as the time of the 

fire occurrence and the level of danger, along with a request for assistance to control the situation as shown 

in Figure 16. 

Figure 15  Monitoring the system via the Thankspeak cloud. 
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3.3 Comparison between the Previous Works and the Proposed Solution 

 

    This paragraph focuses on highlighting the key differences between previous solutions and the FAMS. 

The comparison is made by evaluating several essential criteria, including the number of sensors used, the 

reliability and sensitivity of the sensors, the type of training system employed, the number of training inputs, 

the number of fire experiments conducted, the total number of samples used for training and testing, the 

number of epochs used for training, system accuracy, The average time taken before a fire is detected, and 

finally, the ability to resolve the issue of unknown values in the output after training. Table 6 presents the 

details of this comparison: 

 
Table 6: Results and Differences Between Previous Solutions and the FAMS 

 
 [11] [21] Proposed FAMS 

Number of sensors used 3 3 2 

Reliability and sensitivity of the sensors used LOW LOW HIGH 

Type of training system ANFIS BPNN ANFIS 

Number of training inputs 4 6 3 

Number of fire experiments - 6 7 

The total number of samples for training and testing - 3500 2000 

Number of epochs used 100 50 20 

System accuracy - 99.4% 99.58% 

The average time taken before a fire is detected - 135 S 97 S 

Solve the problem of unknown values in the output after 

training 
NO NO YES 

Using the cloud to monitor, store, and analyze data NO NO YES 

Alarm messages via GSM NO NO YES 

 

Figure 16 Alert messages from FAMS 
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  The FAMS solution exhibits several improvements over previous work. It achieves fast detection time and 

comparable accuracy with fewer sensors, interpolation training, and epochs. Moreover, it provides high 

sensor reliability and sensitivity and solves the problem of unknown values of results after training. This 

indicates that the proposed FAMS can provide efficient, reliable, and effective fire detection and 

monitoring. 

     

 

 

4. CONCLUSIONS 

 

    The FAMS is an effective system for the early detection of fires inner buildings, especially inside college 

campuses, where excessive-efficiency sensors along with eCo2, TVOC, and flame temperature are applied. 

The ANFIS machine has been educated on statistics amassed from actual environments and experimental 

fires involving numerous materials and situations. Based on real-time sensor statistics, the machine 

determines the extent of the alert and monitors and analyzes records using the Thingspeak cloud platform. 

SMS alerts containing comprehensive facts about the heart location, severity stage, and detection time are 

dispatched via GSM networks to help firefighters extinguish fires as fast as possible. The ANFIS system 

achieves high accuracy, as much as 99.58% after schooling, way to ANN and fuzzy logic features, lowering 

false alarms and aiding in distinguishing between true and false alarms. The FAMS solution demonstrates 

several improvements over the previous works. It achieved faster detection times by reducing the fire 

detection rate by 28% and accuracy with fewer sensors, training inputs, and epochs. Additionally, it offers 

higher sensor reliability and sensitivity and solves the problem of unknown values in the output after 

training. By employing IoT and ANFIS technologies, the system integrates efficiency to achieve safety and 

fire suppression for the protection of lives and public property, highlighting the importance of safety and 

technology in human service. 
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